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The asymptotic behavior of the thermoelectric force, Peltier coefficients, and Thomson 
coefficients for metals with closed Fermi surfaces and open surfaces of the "corrugated 
cylinder" and "space net" types is investigated on the basis of the quasi -classical theory 
of kinetic phenomena in metals in strong magnetic fields, as developed by Lifshitz, Azbel', 
and Kaganov1 and Lifshitz and Peschanskil. 2 

LIFSHITZ, Azbel', Kaganov, and Peschanski11•2 

have given the theory of the asymptotic behavior 
of the kinetic coefficients in very strong magnetic 
fields, when the period of rotation of the electrons 
is much greater than the relaxation time. The 
asymptotic dependence of the coefficients on the 
magnetic field and on its direction relative to the 
crystal axes is then largely determined by the 
nature of the Fermi surface, and is very different 
for open and closed surfaces. The coefficients are 
weakly dependent on the actual form of the colli
sion integral and on the dispersion law. The range 
of validity of this quasi-classical theory is indi
cated by Lifshitz et al. The asymptotic behavior 
of the electrical conductivity tensor was calcu
lated in detail1•2 and some aspects of the behavior 
of the heat conductivity tensor and of the Thomson 
coefficient were briefly considered3 on the basis 
of the theory. In the present work we discuss in 
detail a number of thermoelectric phenomena. 

As is well known, the electron distribution 
function, f, for a metal in an electric field and 
a temperature gradient differs from f0 

= { exp [ ( E:- Jl )/kT] + 1} -l by an amount f1 i.e., 
f = f0 + f1 • f is derived from the solution of the 
corresponding kinetic equation. As a result of 
the additional term f1 the current density vector, 
j, and the heat current vector, q, differ from 
zero, and are related to f1 by the simple equations 

• 2e \'fd 
J = ( 2rc h)" .\ V 1 p, 

In general j and q can be written in the form 4 

377 

(2) 

In a magnetic field the kinetic coefficients are 
functions of the vector H. The coefficients in (2) 
are not independent, but are related by the well
known symmetry relations 

a,k (H) = akt (-H), d;11 (H) = dkt (-H), 

bn1 (H)= C!u (--H). (3) 

If E and q are expressed in terms of and 
V'T, we obtain 

where 

which satisfy the symmetry relation connected 
with (3): 

O;k (H) = Okf (-H), x,,, (H) = Xfli (-H), 

TC(;k(H) = Pkd- H). 

(4) 

(6) 

In these expressions Uik is the electrical conduc
tivity tensor, Kik is the heat conductivity tensor, 
O'ik can be called the thermal emf tensor, and 
.Bik are the Peltier coefficients. 4 It can easily be 
shown that the Thomson effect and related phe
nomena are described by the quantity 
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In what follows we shall be interested in the 
asymptotic behavior of the thermal emf in a strong 
magnetic field. Evidently, knowing the dependence 
of O!ik on H, and using the symmetry relations, 
the asymptotic behavior of /3ik and J..Lik can 
easily be derived. In fact, we will first look for 
the asymptotic Peltier coefficients in each case, 
for the following reason. It can be seen from (5) 
that whereas O!ik is connected with aik and bik 
[i.e., it is found from the solution of the kinetic 
equation with an electric field ( aik) and a tern
perature gradient (bik) present], the value of 
/3ik can be found if the solution of the kinetic 
equation in the presence of an electric field only 
is known so that Cl!ik can be determined by using 
relation (6). 

1. CLOSED FERMI SURFACE 

To find the dependence of the tensor /3ik on 
magnetic field one must know the behavior of aik 
and Cik, and we shall base our calculation on the 
work of Lifshitz and PeschanskiL 2 They examined 
in detail the asymptotic electrical conductivity ten
sor, Uik = aik /T, but it is clear that apart from 
some special cases (as can occur in the case of 
equal numbers of electrons and holes for closed 
surfaces ) , the form of the field dependence of 
aik and Cik will be analogous. These cases will 
be examined separately. 

a) Unequal numbers of electrons and holes. 
We use below the symbol Yo= 1/wt0 where t 0 is 
some characteristic time of the order of the re
laxation time, and w is some frequency of revo
lution of an electron in its phase trajectory. We 
must look for the asymptote of quantities in a 
very high magnetic field, such that Yo « 1. Ac
cording to Lifshitz and Peschanskil, we have for 
this case 

(7) 

and the expansion of af~ in powers of Yo starts 
with the zero order term in general. The symme
try relations (3) are taken into account in (7). The 
most important fact turns out to be that the com
ponents axy and ayx are independent of the col
lision integral and 

Gxy = -Gyx = 2ecT (V1- V2)/ H (2~th) 3 = ecT (n1 -n2) I H, 

where vi and v2 are the volumes in phase space 
occupied by electrons and holes, and n 1 and n2 

the corresponding numbers of electrons and holes. 
Using (1) we then obtain 

Evidently 

( y:o~~ YoC~~ ,,,~) ) 
(0) y~c~~ (0) 

Ctk =· - YoCxy YoCyz ' 

-roc~~ - YoC~~ c<o> 
22 / 

then 

(8) 

where 
1t2k2T2 d 

'lxx = "uu = - 3-e- di In (n1- n2). (9) 

Remembering that Cl!ik = [ l3ki (-H) ]/T and taking 
the symmetry relations into account, the coeffi
cients of the thermal emf, Cl!ik are equal to 

(10) 

b) Equal numbers of electrons and holes. This 
corresponds to a whole range of metals. The ex
pansion of the components axy in terms of Yo 
now starts with the quadratic term. i.e., 

( ':"~~ r~ai~ 7 ,<•>) 0 xz 

2 (0) ~~a~~ roa~~ . Gtk = lo!lxy 

- roa~~ - roa~~ a<o> zz 

If we make use of the fact that d (n1 - n2 )/dE 
.r 0, then cxy"' y 0, as in the first case, i.e., 
the dependence of Cik on H is unchanged. We 
then obtain ( _, -1 

'") lo "xx lo '~xy 

IJ _ -1 -1 
vyz ' IJifl = lo '~yx lo '~yy 

r o-1 '~zx -1 
'~zz lo '~zy 

and 
- lo-1 'Yyx 

(11) 

(12) 

-· lo-1 'Yuv 

- 'l'o-1 '~zx) 
- ..,-1 v (13) 

oo zy · 

"uz 'Jzz 

In the present case all the Vik depend on the angle 
between the vector H and the crystal axes, and 
their actual form is determined by the collision 
integral and the dispersion relation. 
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2. OPEN FERMI SURFACE 

Lifshitz and Peschanskil2 have shown that in 
this case the kinetic coefficients are rapid func
tions of angle near certain particular directions 
of the magnetic field, when the character of the 
phase trajectory changes, i.e., goes from open 
to closed or vice versa. The field dependence of 
the coefficients varies rapidly near to these direc
tions, and it is, in general, no longer possible to 
expand in powers of y 0• These authors pointed 
out that there are three types of special field 
direction: a) directions for which a band of open 
trajectories exists, forming a one-dimensional 
set; b) directions giving open trajectories form
ing a two-dimensional region; c) an isolated di
rection of the vector H in the region of open 
trajectories, where the trajectories become 
closed. 

We consider below the behavior of the thermo
electric coefficients near the special directions 
of all three types. 

The "corrugated cylinder" is the simplest 
type of surface. For field directions which make 
a not too great angle with the cylinder axis, the 
trajectories are closed and the asymptotic ex
pression for f3ik and, correspondingly, of O!ik 
will be just the same as for closed surfaces. The 
behavior of f3ik, however, changes rapidly when 
H approaches a direction perpendicular to the 
cylinder axis. The corresponding special field 
direction belongs to the first type. If we introduce 
7J = y0 /sin e (where e is the angle between the 
cylinder axis and the plane perpendicular to the 
field vector), choose the direction of H as the 
z axis and take the x axis as lying in the plane 
passing through H and the cylinder axis, then2 

iobxy (·~) 

b!IY (1J) 

byz (-1)) 

where bik is a function of the type 

(14) 

where bi~> and A.ik are relatively slow functions 
of the angle e. Then 

( 
i~fxx('YJ) 

C;k = - iofxy (-1)) 

-jofxz (-1)) 

(15) 

(16) 

From this it is easy to obtain 

iovxy (1J) 

vyy (1J) 

Yzy (·~) 

and the thermal emf is consequently 
- j;l Yyx (- '>]) 

vuu (-'>]) 

vuz (-1)) 

(17) 

(18) 

For T)- oo Vik tends to a finite limit. By 
comparing their behavior for two limiting values l 
of e (0 and 1r/2) we see that all the Vik• ex
cept vyx• vyz• and Vzx• are relatively slowly 
varying functions of e, i.e., they retain the same 
dependence on H for all angles. At the same 
time, vyx. vyz, and Vzx vary rapidly in the 
neighborhood of e = 0. By considering this be
havior for e = 0 and e = 1r/2 one can obtain 

'I _ 1J2j(1J)+1Jcr(1J) 
ZX - 1 + 1)2V (1J) ' 

1)2~ (1)) - 1)0 (1J) + 1J2P (1J) (19) 
'lyx = 1 + 1)2 A (1J) • 'lyz - 1 + -~2'1' (1J) • 

where {3, y, o etc. are slowly varying functions 
of angle, and their actual form depends on the dis
persion law .and on the collision integral. 

For directions of H which make a not too large 
angle with the cylinder axis, we have 

where R is the Hall constant. 
Another surface which lends itself easily to in

vestigation is the "space net" type of surface. For 
this all three types of special field direction exist, 
and we will not consider the properties of the first 
type which is exactly equivalent to the case of 
e = 0 for a corrugated cylinder. We will discuss 
the other two cases, which refer to the magnetic 
field direction close to the direction of the crys
tallographic axes and of the boundary of the two
dimensional region of field directions which give 
open trajectories. In these cases the required 
choice of angle ..9- can be obtained from the fact 
that aik must be of the form 

loa~~ 

~~a~~+ ~c1 

- joa~oj + ~c. 
(21) 

where aik is mainly determined by closed trajec
tories, apart from which there is a band of open 
trajectories with width proportional to the angle J. 
Then 
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(22) 

from which it is easy to deduce that 

(23) 

and the coefficients of the thermal emf are 

0 yx 1 o yx zx 1 o zx 

( 

Yxx 

X;k = + -Yovxy 

- Yo"xz 

- )' 'I - i>v-lv (l) V -ltv-l )1) ) 

"YY "zy • (24) 
- Yo'~yz -1- itv~V "zz 

In the same way we have found the form of the 
asymptotic behavior of the thermoelectric coeffi
cients near the singularities of all three types. 

We must make a comment on the asymptotic 
behavior of the heat conductivity coefficients. 
Azbel', Kaganov, and Lifshitz3 have considered 
the heat conductivity of metals with closed surfaces. 
In metals with open surfaces the heat conductivity 
tensor Kik behaves completely analogously to the 

electrical conductivity Uik in its dependence on 
H. This is seen immediately by considering how 
Kik is composed of aik· bik· and Cik· 
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