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Equations of motion for the partial magnetizations of a system containing two kinds of in­
teracting magnetic moments situated in a weak variable magnetic field are obtained by 
methods of thermodynamics of irreversible processes. The same equations can be derived 
from the microscopic theory in the case of sufficiently rapid thermal fluctuations of the 
local fields. The relaxation times and the shift of the resonance frequency are computed. 
It is shown that a universal relation, similar to the Kramers -Kronig relation, exists be­
tween the quantities determining the transverse relaxation time and the resonance fre­
quency shift. 

l. In many problems of the theory of magnetic 
resonance one has to deal with systems contain­
ing two kinds of magnetic moments. Such systems 
are substances whose molecules contain two kinds 
of nuclei with different gyromagnetic ratios, viz: 
isotope mixtures, paramagnetic solutions, metals. 
In some cases these systems are described by two 
uncoupled equations for the partial magnetizations. 
In spite of this, the behavior of the magnetic mo­
ments of one kind may depend in an essential man­
ner on the nature of the interaction between the 
magnetic moments of the other kind, through the 
relaxation times and the shift of the resonance 
frequency. An example of such a system is a 
solution of Mn ++ in water .1 

The microscopic theory of relaxation processes 
in systems which contain the same number of mag­
netic moments of each kind with spin ! , and which 
differ only in their gyromagnetic ratios, was de­
veloped in Solomon's paper2 and was applied to 
the description of nuclear resonance in hydrogen 
fluoride. 3 

On the other hand, by the method of the thermo­
dynamics of irreversible processes, one of us 4 has 
obtained equations for the partial magnetizations 
M1 and M2 in weak variable fields of arbitrary 
orientation with respect to the constant field. 

In the present paper we develop a thermody­
namic theory more complete than the one given 
in reference 4, and also a microscopic theory of 
systems containing two kinds of magnetic moments 
for weak magnetic fields; we also obtain equations 
for the partial magnetizations M1 and M2• 

2. The thermodynamic theory of the systems 
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under consideration may be developed on the basis 
of the methods of thermodynamics of irreversible 
processes. 5 

We suppose that the paramagnetic sample is 
situated in a constant magnetic field H =Hz and 
in a variable magnetic field h (t) which violates 
thermodynamic equilibrium only to a small extent. 
In this case the partial magnetizations of the sub­
systems M j = M j ( t) ( j = 1, 2) satisfy the follow­
ing equations linear in the variable field: 6 

• k 
Mti = L} Lrm, jk (hm (t)- hm ), 

m,k 

l, m = x, y, z; j, k = 1, 2, (1) 

where 

(2) 

while 

(3) 

are the equilibrium partial magnetizations of the 
magnetic subsystems. 

On going over to circularly polarized compo­
nents 

M± 1 ==F (M..,± iMu)JV2, 

h±l = =f (hx± ihy)JV2, 

we shall obtain in accordance with (1) 

(4) 

(5) 

ct,~=±l,O. (6) 

The kinetic coefficients Laf3,jk satisfy the 
Onsager relations, which in the case of paramag­
netic media ( Xj « 1 ) have the form 
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~=1= ~. L ... ~.Jk (H0 ) =- L;a.,Jk (- H0 ) =- L-fl-a.,Jk(- Ho), 

~ = ~. La.a.,Jk (H0 ) = L:a.. Jk (- H 0 ) = L-a.-a., Jk (- H 0). (7) 

Requirements of axial symmetry with respect 
to the direction of the constant field H lead to the 
additional relations 

La.p, Jk (H 0) = 8a.a La.p,, Jk (H 0), 

Ln. Jk = L._1 -1. Jk =/= Loo, Jk• (8) 

Equations (7) and (8) can be satisfied if we set 

L (H ) .. ~ 1 Jk . Jk Jk JkH a.a.. Jk o = r x1xk ( 1 T" + t~w ), w = i o, 

where -?k and T~ are even functions of H0 

symmetric with respect to an interchange of the 
indices jk: 

T fk Jk (H 
J. = T ±1 o), 

(9) 

In weak fields (H0 - 0) the system possesses 
spherical symmetry, and therefore 

T Jk _ rfk _ rtk 
J.- II- . (11) 

On substituting (9) into (6), and on taking (2) and 
(3) into account, we obtain a system of linear equa­
tions of motion for the partial magnetizations 

Ma.J + ~ Y x1 I Xk ( 1 I T~k + i~1k) (Ma.k- M~k) 
k 

= ~y l.tXk (1 IT~+ i~w1k)h" {t), 
k 

(12) 

which contain undetermined (within the frame­
work of thermodynamics) coefficients T~ and 
yjk. 

For a system containing one kind of magnetic 
moments ( j = k = 1 ) we obtain the equations 

Ma. + (1 ITa.+ i~w0 ) (Ma.- M~) 
=xo ( 1 IT a. + i~w0 ) ha. ( t), (13) 

which agree with those which we have obtained 
earlier in microscopic theory.7 

In the absence of a radio-frequency field 
h(t)=O andwhen Xjlxk=(Yjhk)2 Eqs. (12) 
reduce to the equations obtained by Solomon.2 

They differ from the equations obtained in refer­
ence 4 by the presence of terms containing w12 • 

The static susceptibilities appearing in (12) 
depend on the thermodynamic temperatures of 
the subsystems which, generally speaking, may 
differ from the temperature of the remaining 
degrees of freedom of the magnetic material -
the equilibrium lattice temperature. By restrict­
ing ourselves in this paper to the case of weak 
fields h ( t ) , we neglect variations in the tern­
peratures of the subsystems by setting them equal 
to the temperature of the sample. The transfer of 
heat from the spin system to the "lattice" may be 

taken into account in a manner analogous to that 
used in reference 6. 

3. In order to interpret the coefficients T~ 
and wjk appearing in Eqs. (12) we consider the 
case of the free precession of the magnetization 
h (t) = 0 in the constant field H0• 

On setting 

Ma.t (t) = M~t + Aa.J exp (- 1-a. t), (14) 

we obtain for the determination of Aaj a system 
of homogeneous equations, the condition for the 
solution of which has the form 

(- 1-a. + 1 1n1 + i~w11) (- 1-a. + 1 IT':+ i~w22) 

= (1 I T~2 + i~wu) 1• (15) 

Solving the quadratic equation (15) with respect 
to A.a, we obtain the complex eigenvalues A.~. 
Now the solutions of (12) can be written 

Ma.1 (t) = M~1 +At(- t-t + 1 I T~2 + i~w22 ) exp (- t-tt) 

-A;~ (1 IT~2 + i~w12)exp(- t-;t), 

Ma.2 (t) = M~2 -At Y X.2 I Xt (1 I T~2 + i~w12) exp (- t-t (t)) 

+A;(- t-; + 1 I T~1 + i~ro11) exp (- t-;t). (16) 

In two limiting cases they assume a particularly 
simple form. If 

(1 1 n2 + i~12) 2 

< (1 I T~1 - 1 I T!2 + i~11 - i~22 ) 2, 

then, in accordance with (15), 

In this case 

1-: = t-! == 1/ T!2 + i~w22 , 
t-- = t-~ = l I n1 + ia.w11 • 

(17) 

(18) 

Ma.1(t) = M~1 + Aa.1exp(- 1-~t), (19) 

where TY have the meaning of relaxation times, 

while wY have the meaning of characteristic fre­
quencies. 

If the inequality of (17) is reversed, the eigen­
values are determined in the following manner: 

1-~ = 1/ 2 (1 IT~1 + 1tT!2 ±21 T~2) 
(20) 

and the solutions for M±tj ( t) have the form of 
damped beats, which .are due to the existence of 
coupling ( T~, w12 ) between the equations for the 
partial magnetizations. 

4. The microscopic theory of relaxation and 
resonance phenomena in systems containing two 
kinds of magnetic moments can be developed on 
the basis of the method of Kubo and Tomita8 in a 
manner analogous to the one which we used in the 
case of one kind of spins. 1 

We shall assume that the g -factors of the par-
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ticles are isotropic, while the spin-Hamiltonian 
of the system does not contain products of more 
than two spin operators ~~>, and therefore con­
tains them in combinations which transform ac­
cording to the irreducible representations of the 
rotation group D0, D1, and D2• Then, on taking 
into account the fact that ~~ > ~~j> = const, we can 
write 

(21) 

where 
Nl 

A A/ 
;;el =-~ 'AWj ~I so (22) 

I 

is the operator for the interaction of the magnetic 
moments with the constant external field H0, Wj 
= YjH0; ;A represents the part of the total Ha,T-il­
tonian JC which is independent of the spins; JC' 
is the perturbation: 

N/Nk 

ic' =leu+ 1c12 + ;1e22 = ~ ~ ie{~ = 2] ~ 2] (F;~'+•>.Ik 
j<,k 1-v l<;k 1. v s<m 

X {J~> J~>h.+ llv,-,_A;,;.Ik JVl n/:2..,_) 
N/ 

+ ~ ~ LjllJkp;<'-+v),/ {]V> j~I>}A., (23) 
/<.k AV s 

where 
A(/) A(k) .. ~A(/) A(k) 

{/ s f m }±1 ±1 = Y 15121t f S±l/ m±l• 
A {i) A (k) A(/) A (k) 

{lslm}±IO =Y15141tls±llmo• 
A(/) A(k) .. ~ A(/) A(k) 

{/ s I m }o±l = y 15141t I so I m±l' 

<JV> J<,!>}oo = JI5Tit f~~) f~~. 
A{i) A(k) .. ~ A(/) A(k) Us lm}±Hl =y 5141t fs±lfmH• 

Under a rotation of coordinates the coefficients 
_n. +v) J'k _n. +v)J. 

Fsrii: ' , F s '" transform according to the 
representation D2, while A;~jk transform ac­
cording to D0; this determines their angular de­
pendence. 

Expression (23) may, in principle, contain com­
binations of spins which transform according to 
the representation D1• However, in this case the 
coefficients must be functions not only of the co­
ordinates but also of a certain axial vector. The 
only such vector in the case under consideration 
is H. We shall obtain such an expression, for 
example, if we take into account the anistropy of 
the g -factor. 9 

The choice of the Hamiltonian in the form (21) 
- (23) enables us to take into account the quadru­
pole moments of nuclei, atoms and ions and their 
interaction with the local inhomogeneous and, gen­
erally speaking, fluctuating field (for nuclei and 
atoms inside the molecule or for ions inside the 

complex), and also weak direct and indirect ex­
change interactions leading to hyperfine splitting. 
The singling out of coefficients which depend on 
spherical harmonics leads to simpler calculations 
in the case of a homogeneous and isotropic me­
dium. 

According to reference 7, to compute 
00 

0 ~ \' dGa./3 (-r:) • , 
Ma.1(t)- Ma.1 =- £.J j ~hr> (t- 't)d't 

ll 0 

it is sufficient to determine the form of the re­
laxation function 

(24) 

Ga.ll ('t) = o:r> (-'t) = ~Ga.M('t), 
j 

Ga.r>(oo)=O, (25) 

where for the fields ordinarily used (tlwj « kT) 

(26) 

and Maj ( T) is a time-dependent operator in the 
Heisenberg representation determined by the 
Hamiltonian JC: 

Mczf ('t) = exp (i3C't I 1i)t1.czf exp (- iic't I R,). (27) 

We seek expressions for Ca,Bj ( T) in the form 
of expansions in terms of the parameter character­
izing the perturbation: 

Gczllf ('t) = G~J1 ('t) + G~1JJ('t) + G~~~ (-r) + ... , (28) 

where 

.. 
G~Jn't) =- k:1i ~ ~ d% Sp Po {[M~,('t), it'(.&)] M13k} etc., 

k 0 

while .... the dependence of the operators M~j ( T) 
and JC' ( T ) on the ti{lle is determined by the 
Hamiltonian JC0 according to the usual formulas 
analogous to (27). 

The character of the subsequent calculations 
depends on the magnitude of the interactions de­
termined by the operators :JC11 , 3C12 and :JC22. If 
:JC11 "' :JC12 "' J'c22 then one should consider to the 
same extent all terms of the perturbing operator 
(23). On the other hand, if Jc11 » ~12 » 3c22 , then 
in considering the first subsystem we may neglect 
~12 and ~22 , while in considering the second sub­
system we may neglect JC22. 

5. In the first case we have for a homogeneous 
and isotropic medium, if the density matrix may 
be assumed constant, 

G~J1 ('t) = (-ltxJila.. -ll exp (- iocwf't), (29) 
Nk 

G(l) ( ) • a<o> ( ) 1 "' A'k fA (k)> • a<o> ( ) A (!) // a.(jf 't = liX't a.(jf 't T "-l ( sm mo = lOC't a.(jf 't u.W • 

m (30) 
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Using the property of the independence of the 
trace of the time origin, and neglecting the terms 
with A., v .e -A.', - v', we obtain in a manner 
analogous to the one used in references 7 and 8, 

... &, 

G~~,(-r) =- G~0J1 (-r) ~L] {~ d&1 ~ d&2 
k >.v o 0 

... &, 

+ ~ d&1 ~ d&2 exp [(i}.w/ + ivwh) &1 + (i (~- }.) WJ 

0 0 

-l (~ + v) wk) &2J ~ Q~1. (.\;1- .\;2)} 

- G~0J1 ( -r )( ~~w(1) I /)2 ; , (31) 

where the functions 

" ~ /k A, jk• ". 
plk (& _ & ) _ «IM«1.1t'->.-.C&t- &s)][.7t'->.-v (0) M"1J» 

a>.v 1 2 - fi,2 <I M"/ 12> 

- a>.oavo <~~w<1> 11)2 , (32) 

(33) 

satisfy the conditions P{!\v ( oo) = Q~A.v ( oo) = 0. 
The angle brackets denote everywhere averag­

ing over the coordinates and the spins, using a con­
stant density matrix, while figure brackets indicate 
the symmetrized product of th .... e. operators. 

The Heisenberg operators :ret, ( t) appearing in 
(32) and (33) contain a dependence on the time de­
termined by the Hamiltonian JC2·• 

To ascertain the type of equations of motion 
for the partial magnetizations Maj (t ), we differ­
entiate (24) with respect to the time. Then, after 
integration by parts we obtain 

dM':lt (t) = _] dG::~ (0) h; (t) _] r d1G;:~ (-r) h; (t --r) d-r. 
~ ~ 0 

(34) 

Differentiating (29), (30), and (31) with respect 
to T, and adding them together we obtain 

dG«M ('t) I d"t = -iocw/G«M (-c) 

- iocG~~I (-c) ~w~> 11 (1 - i~~w~> 11-r) 
... 

- G~~f (-r) L:L: ~ d&exp [(i}.wl + ivw,.) &J P~~. (&) 
k l.v O 

... 

-Glt~k (-r) Y x.11x.,. L]~d&exp [ioc(wk- w,)&J Q~~. (&), 
).v 0 (35) 

"k "k where Ph.A.v(t) and Qh-A.v(t ), in the case of an 
isotropic sample, are made up of parts corre-

sponding to different terms in the interaction 
Hamiltonian (23). If the characteristic times for 
these functions satisfy the condition of strong 
narrowing* 

-rp < (P~~. (0)-'1• (Q /k )-'/• 
'tq < <lAY ' (36) 

then the integrals in (35) may be replaced by their 
asymptotic expressions:7 

00 

= ~ d& exp [(i}.w1 + ivw,.) &J P~1. (&), 
o· 

/k /k • • • 
Q,.>.vX>.v = Q«>.v (0) (x>.v + lX>.v) 

00 

= ~ d&exp [ioc (w,.- w1) &J Q~\. (&). (37) 
0 

Further, on introducing the notation 

1 I rU + ioc~w(2) II = L: L: P~. (0) "t>,y, 

k >.v 

1 T /k • fk "'Q'k 0 I " + lri.~W = ""-! <lAV ( ) X>,y, (38) 
>.v 

we obtain, up to terms of second-order perturba­
tion theory, the equation satisfied by the relaxation 
function G a{3j: 

dG«M(-r) I d-e=- L] Y x.11x,.( I IT/,.+ iocw1k) G"~k (-c), (40) 
k 

where we have approximately replaced 

G~0J1 (-c) (1 - ioc~w(I)J/ -c)--+ G«M (-c). 

On substituting (40) into (34) we return to Eqs. 
(12) for the partial magnetizations. If the specific 
nature of the interaction is given, then the coeffi­
cients Tjk and wjk appearing in (12) are deter-a 
mined by (38) and (39). 

6. In the case when :re22 « JC12 « JC 11 we can 
write 

(42) 

where r~Vli ( T) and M012 ( T) are operators in the 
Heisenberg representations defined respectively 
by the Hamiltonians :reo + :reu and JC0 + :!C11 + :IC12• 

As may be seen from (41), an independent 
equation is obtained for the first subsystem in 
this case. If P~hv(t) is a rapidly varying func­
tion of time, we obtain, as in the preceding case, 

dG"13r(-c)ld-c=- (1 I n1 + iocw11) G"~I(-c), (43) 

*In this case the local fields fluctuate rapidly because of 
the thermal motion of the magnetic moments. 
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where T~ and w11 are calculated for the case 
of the interaction ;re11 by means of the formulas 
given earlier. On solving this equation under the 
condition G af31 ( 0 ) = (- 1 ) ax1o a, -{3 we obtain for 
the second subsystem 

dO,.Il2(-r)/d'r= -(1/T~ + ia.w22) 0,.132 (-c) 

V-- 21 
- X2 I Xt ( 1/ T a + ia.w21) 0,.131 (-c), (44) 

where 
00 

~; + ia.6w(2) 22 = ~ ~ d.&P!~. (.&) exp [ ( i'Aw2 + ivw11 - :~1 ).a-], 
00 

121 + ia.w21 = ~ ~ d.&Q!L (&) exp [ (ia. (wll- w2)- ~) .a-J . 
~ bo ~ 

(45) 
If y1 » y2, we can neglect the last term in (44), 

and the equations for the separate subsystems are 
completely separated, but the coefficients in these 
equations turn out to be coupled. If T~ is con­
siderably less than the characteristic time for 
the function P~A.v(t), then we may set in (45) 
P~A.v ( t) = P~A.v ( 0 ) . Then, if the condition T~1 

« (P~A.v(O ))-1/2 is satisfied, we shall have 

1 f>..ro + ivroll + 1/ T11 - + . A (2) 22 - ~ p21 (0) 2 v ...2 ta.u.w - a"Av • 
J :2 (J.ro2 + vro11)2 + (Tll)-2 « l~ v 

(46) 

The relaxation time and the shift of the reso­
nance frequency for one substystem turn out to be 
related to the relaxation time and the resonance 
frequency of the other subsystem. 

7. The real and the imaginary parts of the co­
efficients TA.v ( Wj, Wk) and KA.v ( Wj, Wk) which 
were determined earlier in (37) satisfy the dis­
persion relations. 

We consider the integral ( w j ~ Wk) 

-c,_.(wJ> wk) = -c~. (wJ> wk) + i-c~.(WJ> wk) 
00 

=[I/ p~k"Av(O)] ~d&exp [(it-.w1+ ivwk) &]P~'A.(.&). (47) 
0 

We let Wj take on not only real, but also com­
plex values. Then, for A.> 0 in the upper half­
plane, and for A.< 0 in the lower half-plane, 
TA.v vanishes when I Wj I - oo • If we represent 
TA_v(wj, wk) by means of Cauchy's theorem in 
the form of an integral along a contour consisting 
of the entire real axis and of a semi-circle of in­
finite radius (taken, respectively, in the upper 
half-plane in the case A.> 0, and in the lower 
half-plane in the case A. < 0) then we obtain in 
the usual way the following dispersion relations 

+oo +oo 
-c' = C -r~. (x, rok) dx -c = _!... C "~• (x, rok) dx (48) 

"l.v ± J X-Wf ' "/.v =f :n; J .X-ro/ t 

-oo -<X) 

where A.=± 1. We can, evidently, write down com-

pletely analogous relations with respect to the vari­
able wk. 

Thus, a universal relation, analogous to the 
Kramers-Kronig relations, exists between T~v 
and T~v· Expressions (48) are of a very general 
nature, and do not depend on the specific form of 
the functions P~\v(t ). Expressions (38) provide 
a simple connection between the relaxation time 
and the resonance frequency shift on the one hand, 
and the quantities T~v and T~v on the other. 

. 8. When the characteristic time for P~~\v and 
Q~A.v is great, then we can no longer make use of 
the asymptotic expressions for the integrals in 
(35). The concept of relaxation times in this case 
has no meaning, and we cannot write down simple 
macroscopic equations for the partial magnetiza­
tions. In this case we can calculate directly the 
partial susceptibilities. By expanding Maj (t) -
M~j and hf3(t) into Fourier integrals with re­
spect to time we shall obtain for the correspond­
ing Fourier components maj ( w) and hf3( w) the 
following equations 

maf(w) = ~(x~131 (w) + ix:131(w))Ldw), (49) 
(3 

where 
00 

x~131 (w) = Xoll«-13- (-I )13w Im ~ 0,.131 (-c) exp (iw-c) d-e, 
0 

00 

• (3 (J) i 
Xo:r>t(w) = (-1) T ~ 0,.13!(-c)exp(iw-c)d-c. (50) 

-oo 

The real and imaginary parts of the susceptibil­
ity are related to one another by the Kramers­
Kronig relations. 
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