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Correct expressions for the relativistic operators for momentum and angular-momentum, 
components in orthogonal curvilinear coordinates are derived by a systematic application 
of the theory of spinors. 

INTRODUCTION 

IT is well known that the operators for mom en
tum and for covariant differentiation differ only 
by a constant factor. Since the Dirac equation 
contains a linear combination of products of mo
mentum components by a spinor, one must then 
use covariant derivatives of a spinor to write this 
equation in curvilinear coordinates. Operators 
for covariant differentiation of a spinor have been 
calculated by Fock and by Ivanenko and are given 
in the books of these authors .1 •2 The virtue of 
these operators is that they agree with the rule 
for differentiation of a vector and give the cor
rect result when a certain linear combination of 
them is substituted in the Dirac equation. Indi
vidually, however, these operators are incorrect, 
as is shown below by a particular example. The 
purpose of the present paper is to use an elemen
tary but systematic application of the theory of 
spinors to get the correct expression for the 
operator of covariant differentiation of a spinor, 
and along with it the expressions for the momen
tum and angular-momentum operators. 

1. THE COVARIANT DERIVATIVE OF A SPIN OR 

The spinor ~ is to be regarded as a one -column 
matrix with four complex components. 

It is convenient to represent vectors and bivec
tors by square matrices, as Cartan3 does. Thus 
one puts in correspondence with the vector vi 
the matrix V = ViHi (summation from 1 to 4 ), 
where 

(00 t 0) 0 0 0-1 
Hl = 1 o 0 0 ' 

0 -1 0 0 
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H' = ( ~ -~ ~ -~ ) . 

1 0 0 0 (1) 
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Any two of the matrices Hi anticommute, and 
H~ = ei, e1 = e 2 = e3 = 1, e4 = - 1. We shall con
fine our treatment to orthogonal bases consisting 
of unit vectors (a Galilean frame ) relative to 
which the components of vectors and bivectors 
are real, the space axes having the numbers 1, 2, 
3, and the time axis being taken as the fourth. 

In finding the covariant derivative of a spinor, 
Dk~, we follow Cartan in using the following defi
nition of the covariant derivative Dif of any 
quantity f: 

(2) 

where Df is the actual increase (the absolute dif
ferential) of the quantity f, and wi is the i-th 
Galilean component of the vector connecting two 
neighboring points: 

ds2 = (wl)2 + (w2)2 + (ws)2 _ (w')a. (3) 

The form of the operator Di depends on the ob
ject f to which it is applied. If we denote by wik 
the components of the bivector of an infinitesimal 
rotation ( wii = 0 ) and by Q the Cartan matrix 
of this bivector 

.U=.!...wtkHtHk (4) -2 • 

we have for the absolute differential of a spinor3 

ve =de- -}ne. (5) 

The components of the bivector Q are found by 
an elementary calculation ( cf., e.g., reference 4, 
p. 217 ) . Let the standard form of the line element 
in our orthogonal coordinates xk be 

4 

ds2 = ~ gkk (dxk) 2 , 

k-1 

where x4 = ct ( c is the speed of light, t the 
time ) . Let us introduce the briefer notations 
ekgkk = gk; then 

(6) 

(7) 
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From Eqs. (2), (5), and (4) it follows that 
4 4 

~ Dtero1 =de- t ~ ro1kHtHke. 
t-1 l,k-1 

Inserting the quantities (7), we find 

~ 1 ~ e1 ogk 
LJ Dtew' = de-- "'-l ---- H,H kedxk 
1-1 8 l,k=l yg;g; 0~ 

' 1 ~ ek ogt +s "'-l .. ,- ~n,nkedx'. 
l,k-1 y gtgk O:J>" 

In the first double sum we interchange the 
summation indices i and k; the right member 
of the Jast equation is then written in the form 

1 4 ek ogt 
de+-~ -=- -(H;Hk-HkHt)edx1• 

8 1,k-1 V g,gk ax! 

The terms with i = k cancel. Using the fact 
that the matrices Hk anticommute, we get finally 

4 1 4 ek og, 
~ D1;w' =de+ 4 ~ ~ -.r.;-;;- ax! H,Hkedx', (8) 
1-1 i-lk+ I Y glgk 

and from a comparison of Eqs. (3) and (6) it fol
lows that 

In virtue of the arbitrariness of the differen
tials ctxi we get from Eqs. (8) and (9) 

(9) 

1 a~ 1 ~ ek og, D,e= .. r;;-~+- "'-l .. ,--k n,nke· 
Y g1 .a:ro 4g1 k+ 1 y gk ax 

(10) 

This is the expression for the covariant derivative 
of a spinor prescribed in terms of its components 
relative to the Galilean coordinate frame xk. Be
cause of the presence of the matrices the operator 
Di is nondiagonal, and this nondiagonality canhot 
be removed by any kind of unitary tra.•1sformation. * 

2. RELATION OF THE COVARIANT DERIVATIVE 
TO THE DIRAC EQUATION 

Since the basis for the derivation of Eq. (10) is 
Eq. (2), in which the symbol D has scalar char
acter, it is clear that the index i in the expres
sion Dig is a full-fledged covariant index, and 
the quantities Dig form a tensor of rank three 

*It is also easy to get from Eq. (2) the rule for differentia
tion of the product of a matrix A and a spinor ~: DiA~ = 
(DiA)~ + ADi~· When we use Eq. (10) to differentiate a vector 
expressed as a bilinear combination of the components of a 
spinor, we get the correct result on the basis of the remark 
just made. If, on the other hand, we take the requirement that 
the rule for differentiation of a vector shall hold as the basis 
for finding Di~• the result obtained is not only incorrect, but 
also ambiguous. But if we follow the Cartan procedure there 
are, as we see, no ambiguities. 

halves (a spinor being regarded as a tensor of 
rank one half). Thus we have a right to put in 
correspondence with the canonical momentum 
Pk the expression Pk - - illDk. The treatments 
by Fock1 and by Ivanenko and Sokolov2 give ex
pressions for the momentum operator in which 
the index k is not a covariant index. The cor
rectness of the results so obtained is due to a 
peculiarity of the Dirac equation, which we shall 
now analyze very briefly. 

It is well known that the momentum compo
nents pk, k = 1, 2, 3 and P• = E/c (where E 
is the total energy of the particle) form a con
travariant four-vector. The Cartan matrix of 
this vector is P = pkHk. 

The eigenvalue equation of the energy-momen
tum operator, written in the form 

(11) 

gives the value of the spinor for a free electron, at 
the origin of the coordinates. The matrix 

H =(-~ -~ ~ ~) 
0 0 0 1 0 

0 0 0 1 

is introduced so that the left and right members of 
Eq. (11) will transform in the same way. 3 For 
agreement with the theory of relativity we must 
have i\ = ± m 0c, where m0 is the rest mass of 
the electron. To get the value of the spinor at 
the other points of the space, we must make the 
replacement Pk - - itiDk, or pk - - it'iekDk, 
and add the matrix V of the electromagnetic 
potential, multiplied by e/c (- e is the charge 
of the electron), if there is an external field. 
Furthermore one sets i\ = +m0c, and the Dirac 
equation takes the form 

(-iii. \I+ eV ;c-moeHo)E = 0. 

where 
4 

\le = ~e,H,D/; 
i=l 

Using Eq. (10) and recalling that Hi = ei, we get 

4 et 0 1 4 e og 
\I e =,~ V gt ox'H;E + 7; ~~ k~. g, ,;gk aJ H kE· 

~1 =1 ott 

In the double sum we may sum over k from 1 to 
4, and over the same values of i, except the value 
i = k: 

4 ek 0 1 ~ ~ ek og, 
\IE=~ v- ax! nke + 4 2] ~ v- ax! nke. (12) 

k=l gk k=l i+k g, gk 

Thus we can set 
4 

\I= l]ekHki5k, 
k=l 
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where, according to Eq. (12), 

f5k = _1_ (~ + i. ~ _1 og1 ') 
y gk axk 4 l+k g, azk 0 

(13) 

The operator - ifiDk is also taken for the mo
mentum Pk.1 It has, however, nothjng in common 
with the covariant differentiation operator Dk, as 
can be verified easily by particular examples. The 
correctness of the results obtained by the use of 
Eq. (13) is explained by the fact that 

4 ' 
~ ekHkDkE = ~ ekHkf5ke· 
l-1 k-1 

If, however, one uses the operators Dk not in the 
linear combination with the matrices Hk, but sep
arately, then they naturally lead to incorrect re
sults. 

Let us consider, for example, the cylindrical 
coordinates p, cp, z, x4, for which 

i.e., 

gl = g3 = g, = 1, g2 = p2. 

From Eqs. (10) and (13) we find 

D1 =a;ap, D2 =(a;arp"+'H2Hll2}lp etc. 
f51 = a I i:Jp + I 12p, f52 = a I ar.p etc. 

Let ~ be a constant spin or, prescribed in terms 
of its Cartesian components. In cylindrical coor
dinates the column representing the same spinor 
field is 1 

Since the field is constant, we must have D1;' = 0, 
D2 ~' = 0, and these equations are· indeed verified. 
But D1;' ~ 0, D2;' ~ 0, sp that the operators 
D1, D2 cannot possibly be called covariant deriv
atives. 

We note that the expression (10) can also be ob
tained by starting from the requirement that the 
covariant derivative of a constant spinor .field must 
be zero. 

3. THE ANGULAR-MOMENTUM OPERA TOR 

The components of the operator for the orbital 
angular momentum are defined by the equations 

K1 =-in (R2D8 - R8D2) etc. 

where Rk is a Galilean covariant component of 
the radius vector. The complete (three-dimen
sional ) operator for the angular momentum is 

In spherical coordinates (}, cp, r we get 

K =~{(~+_!_cote) H2 - -.-1- ..E._ H1- H1H2Hs}. , a6 2 sm 6 iJcp 

(14) 

whereas the use of the operators Dk instead of 
Dk would give 

K =- -+-cot6 H2 ·- -.-- H1. - fi{(a 1 ) 1 a } 
i iJ6 2 sm 6 iJ<p (15) 

The eigenvalues of the operator (15) are all posi
tive integers, excluding zero,1 whereas in the non
relativistic theory the angular momentum can also 
have the value zero. The operator (1'1:), on the 
other hand, admits also the zero eigenvalue, be
cause the eigenvalues of the matrix iH1H2H3 are 
± 1 and this matrix commutes with K. 

There is, however, also a third possibility. 
Let us define the angular momentum as the (three
dimensional) bivector with the components 

Kmn = RmPn-RnPm• 

According to Eq. (4) the Cartan matrix of this hi
vector is 

i<:. = H2HaK2a+ HaH1Ka1 + H1HsK12· (16) 

The operator (16) is antihermitian, and therefore 
we must multiply it by i. In spherical coordinates 
we get 

K =-n{(a~ + {cot6)H1Ha+ si~e a: H2Ha}· (17) 

The eigenvalues and eigenfunctions of the oper
ators (17) and (15) are the same (apart from inter
changes of components ) , but from the point of view 
of the representation of operators by Cartan mat
rices the expression (17) must be given preference. 

The results obtained in this paper are also cor
rect in the presence of gravitational fields, provided 
the coordinate bases remain orthogonal, as, for ex
ample, in the case of the Schwartzschild line ele
ment.3 
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