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A method is developed for the treatment of superfluidity of nuclei. A formula which agrees 
satisfactorily with experiment is obtained for the moment of inertia of a nucleus. An ex­
pression is found for the change in the energy of "pairing" in the transition from an even­
even to an even-odd nucleus, and also for the change in the moment of inertia associated 
with this transition. 

1. INTRODUCTION 

SYSTEMS consisting of interacting Fermi par­
ticles can be divided into two classes, depending 
on the type of excited states. When forces of re­
pulsion prevail between the particles, the result­
ant excitations in the system are the same as in 
the case of free Fermi particles, but with an ef­
fective mass that depends on the forces of inter­
action between the particles. In the case of at­
tractive forces, "correlated pairs" are formed 
and lead to an energy gap and to superfluidity .1- 3 

One should think that the second type of single 
particle excitations takes place in nuclei. 

In particular, this follows experimentally from 
the fact that the energy of the first single -particle 
excitation in even-even nuclei is several times 
larger than what one should expect for systems 
of the first type, and is larger than in the case 
of even-odd nuclei. The presence of a "pairing" 
energy, determined from mass defects, indicates 
this same phenomenon. 

The existence of correlated pairs and super­
fluidity is evidenced most clearly in nuclear mo­
ments of inertia. The moments of inertia of nu­
clei are two or three times smaller than those 
computed from the formula for the moment of 
inertia of a solid, and this is the most direct evi­
dence for the superfluidity of nuclear matter. 
Therefore, there is fundamental interest in the 
calculation of moments of inertia of nuclei on the 
basis of the modern theory of superfluidity of 
Fermi -systems. The formalism of this theory 
has been developed for homogeneous, unbounded 
systems. 4 However, in the case of a nucleus, the 
finite dimensions of the system are found to be 
very important. 

A method is developed below, which permits 
us to study superfluidity in systems of finite di­
mensions. The moments of inertia are calculated 
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by this method in a quasiclassical approximation 
and are in satisfactory agreement with the ob­
served values of the moments of inertia. 

The computed value of the moment of inertia 
in the transition from even -even to even -odd nu­
cleus, and also the gyro magnetic ratio for rotating 
nuclei, are found to be in agreement with experi­
ments. 

These results thus confirm the assumption of 
the superfluidity of nuclear matter. 

We note that the superfluidity of nuclear matter 
can lead to interesting macroscopic phenomena if 
stars with neutron cores exist. Such a star would 
be in a superfluid state with a transition tempera­
ture corresponding to 1 Mev. 

2. METHOD OF ANALYZING A SYSTEM OF 
FINITE DIMENSIONS 

1. For a study of superfluidity in a system of 
finite dimensions, it is convenient to make use of 
a method advanced by Gor'kov.5 

In addition to the usual Green's function of a 
single partie le 

G (I ,2) =- i (<P:Z,, TlJ" (I) lJ"+ (2) <P:Z,), (1) 

we introduce a function F ( 1, 2 ) , defined by the 
formula 

F (!, 2) = (¢~, TlJ"+ (I) lJ"+ (2) ¢:Z,_2) e-21<,t. (2) 

Here <I>'N and <I>'N _2 are the eigenfunctions of the 
ground state of systems of N and N - 2 interac­
ting particles, T is the chronological operator, 
and >¥ ( r, t), >¥+ ( r, t) are the operators of anni­
hilation and creation of particles in the Heisenberg 
representation. 

Gor'kov obtained a system of equations which 
relate G and F for weak o -type interaction 
between the particles. 

With the aid of methods of field theory, a simi-
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lar set of equations can be obtained for an arbi­
trary interaction between the particles. 

Another way of obtaining the system of equa­
tions for an arbitrary interaction is to apply the 
method of Gor'kov to a system of interacting 
quasiparticles. 

The following system of equations is obtained 
for G and F: 
[s- H (r)] G (r, r', s) = o (r- r') + i6. (r) F (r, r', s), 

[s + H: (r)- 2s0] F (r, r', e:) =- i6. • (r) G (r, r', e:), 

6. (r) = '\' (r) ~ F* (r, r', e:) de:/2rr. (3) 
G 

Here the· functions G ( r, ri, E ) and F ( r, r', E ) 
represent the Fourier transform of the functions 

-G(r, r', t-t') and F(r, r', t-t'), determined 
by Eqs. (1) and (2), with respect to the last vari­
able. The value of Eo is given by the expression 
Eo = ( E~ - E~ _2 ), where E~ is the ground -state 
energy of a system of N particles. The value of 
Eo determined in this way differs from the chem­
ical potential Eo = ~+ 1 - E~ by the "pairing" 
energy. The value of y ( r) is determined by 
a function describing the interaction between the 
quasiparticles. 

The boundary conditions for the functions G 
and F in r, r' are determined by the boundary 
conditions for the eigenfunctions of the operator 
H = p2/2Meff + U (r ). 

2. We assume that a solution of the set (3) sat­
isfying the boundary conditions has been found. 
Knowing the value of G (r, r', E), it is easy to 
find the single-pat"ticle density matrix 

p (r, r') = (ct>J_,, qt+ (r) '¥ (r') ct>J_,), (4) 

with the help of which we can determine the aver­
age value over the ground state of an arbitrary 
quantity A given in the form of a sum over the 
particles, A= ~A (rj, Pj ). 

j 

The mean value of A is equal to 

<A>= (ci>J_,, ~'¥+A (r, p) 'Y drct>J_,) = SpAp. 

Comparing (4) with the definition (1) of the func­
tion G, we find 

p (r, r') =- iG (r, r', 1:) IN-o = ~ G (r, r', e:) ds/2rri, (5) 
C, 

where the contour C consists of the real axis and 
an infinite semicircle in the upper half plane. 

3. The last equation of (3) contains the function 
y (r ), which cannot be found without a detailed 
knowledge of the forces of interaction between 
the quasiparticles. The effective interaction be­
tween quasiparticles can be computed only in the 

form of a series in terms of some small parameter 
(for example, in the form of the series of perturba­
tion theory, if the interaction between the particles 
is small). In the case of a nucleus, there is no 
small parameter to permit the use of approximate 
methods. Therefore the function y (r) in a nu­
cleus cannot be calculated by analytic methods. 

4. The system of equations (3) is materially 
simplified if the self-consistent potential entering 
into H does not depend upon the coordinates of 
the particle, i.e., in the cas~ of a square potential 
well. Then the density of particles is constant 
over the volume and the function y (r ), which 
depends upon the coordinates only through the 
medium of the density of the particles, is also 
a constant. It can be established that the function 
F (r, r', E) is also independent of r, and there­
fore the quantity D. ( r) is constant over the vol­
ume of the system. 

Solutions of Eq. (3) for constant D. are easily 
obtained if we expand the functions G and F in 
the eigenfunctions of the Hamiltonian H, which 
satisfy the boundary conditions for G and F: 

G (r, r', s) = ~ G"J.A.' (e:) tpA. (r) cp~. (r'), 
A.A.' 

F (r, r', s) = ~ F n· (s) tpA. (r) cp~. (r'), (6) 
"I.A.' 

Denoting 

we obtain from (3) 

(s-H)G=o+i6.F, (s+H')F=-i6.·a. 

6. = "( ~ F* de:j2rr. (8) 
c 

Substitution of (6) into (8) gives,* for constant D.., 

The poles of GA.A.' determine the energy levels of 
the single-particle excitations 

(10) 

5. To find the density matrix, it is necessary to 
know the singularities of G in the complex E 
plane. In the denominator of GA.A.' we must sub­
stitute EA.- iOEA_, 6 - + 0 in place of EA_, which 
means the introduction of an infinitely small damp­
ing of the states that describe the particle and the 
hole. Then 

Thus, in the expression E2 - E~ = ( E -EA.) ( E + EA.), 

*The constant phase of 6. in Eq. (8) can be chosen arbi­
trarily:; therefore, for 6. = const we can set Irn6. = 0. 
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the first factor vanishes in the lower and the second 
in the upper half plane of E. 

According to (5), the density matrix is equal to 

P>.>.' = ~ Gn· dsj2rci = (£1.- s1.) On•/2£'- = V).OJ.>.'. (11) 
c 

Similarly, we find 

F n• ('r = 0) = ~ F >.1: (s) dsj2rc = - t:..;2E>.. 

Substituting this result in the last equation of 
(8), we find the link between y and .6.: 

1 = -1 ~ rp~ (r) 'P>- (r)/2£'-. (12) 
>. 

6. We find the solution of the system (8) for a 
weak perturbation H- H + V. The equations for 
terms of first order in V will be 

(s-H) G'- VG = it:..'F + it:..F'", 

(s+H)F' + V'F = -it:.."G-i6.G', 

t:..'* (r) = 1 ~ F' (r, r, s) ds/2rc. 

We find 

where 

G' = GVG + FV'F + iG6.'F + iFt:.."G, 
F' =- DV*F + FVG +iF t:..' F- iDt:..'*G, 

e-lf 
D = e2 _ ff2 _ t. 2 ' 

G = e-1-/f 
e2-ff2-D.2 • 

it. 
F = - e2 _ ff2 _ t,.2 · 

(13) 

(14) 

Integrating the first equation of (14) with respect to· 
E, according to (5), we find the first-order correc..: 
tion to the density matrix. After simple algebraic 
manipulations, we obtain 

p~~.·= ~ G~~..2d~ 
c 1tl 

(e1h,- E1.E1..) Vu,- t,.2V;J.' + t. (e~. t.~~.· + e1: Ll~~.) 
2E'-E'-' (E'- + E!:) 

In similar fashion we compute the quantity 

The last equation of (13) can be written 

6.'* (r) = 1 LJ 'P'- (r) rp~. (r) \ F~1: (s) ds/27t. 
),).' .) 

(15) 

Here we have neglected changes in y under the 
action of the perturbation V. The left side of this 
equation can be represented in the form 

6.'* (r) =-1St:..;~~.· rp~. (r) rp;: (r);2E'-
H' 

with the help of (12). We obtain an integral equa­
tion for .6.' ( r): 

~. [~ F~1.·ds;2rc + !:,.~·~.. ;4£1. + t:..;~..;4E~o·J rp1, rp;: = 0. 

Making use of (16), we find 

S 2t. (e~.V~J.' + e~..V !.1.') + 2 t,.2 t.~J.' + [2D.2 + (e1,- e~..)•] t,.~~· 
1,1.' E1.EJ.' (EI. + £1.') 

X <"f'~o'P~· = 0. (17) 

3. METHOD OF CALCULATING THE MOMENT 
OF INERTIA 

1. For the calculation of the moment of inertia, 
it is necessary to find the change in the Hamilto­
nian resulting from a transformation to a rotating 
set of coordinates. 

Let H = i£ (p) + U, where p the momentum 
operator. To find the change in H upon transfor­
mation to the rotating system of coordinates, one 
must replace p by p - Mr x 0, where M is the 
mass of the nucleon and 0 is the angular velocity 
of the system of coordinates. We obtain 

where Meff = p/ ( ad&p) is the effective mass of 
the quasiparticles; 9J1 = r X p, and the X axis is 
chosen along 0. Noting that V* =- V, and de­
noting .6.' ( r) = if ( r) OM/Meff• we obtain from 
(15) 

(19) 

where 

[A~..= ~ <p~ (r) f (r) <p~o· (r) dr. 

Multiplying (17) by i, we find 

'i;1 2t.IDl~).' + (eA- e).,) f H' • _ 
LJ E E (E + E ) rp~o (r) <"f'~o· (r) - 0. (20) 
).).' A 1.' A >.' 

We find the mean value of the momentum 

(9J1X) = Sp p9Jlx = LJ m~A' Pi!A· 
).).' 

The moment of inertia is obtained from the ex­
pression 
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1 = <ron = ~ <E ,_E ;_·- .,_ .,_,- ~2 l 1 ro~~,_. 12 -M""' WI~~· ~ . 
Q n• 2£,_ £,_, (E,_ + E,_,) Meff 

(21) 
where f must be determined from the integral 
equation (20). 

2. We note that the integral equation (20) for 
f can be obtained in another way. With the help 
of p we set up the mean value of the current den­
sity <j (r)>= Sp (p'j -p0r x 0); then Eq. (20) 
is obtained from the condition div < j ( r) > = 0 
without use of the third equation of (8). 

This circumstance permits us to solve the 
first two equations of (8) with L\ = const for an 
arbitrary initial Hamiltonian without danger of 
running into a contradiction, in spite of the fact 
that the last equation of (8) leads to L\ = const 
only for a square potential well. 

Let us consider the expression 

(22) 

It is not difficult to see that the quantity 

:t (s 1,, s1.·) = (E ,£,_,- 8t.8 1:- 112);2£ ,£,_, (£1. + £1:) (23) 

as a function of EA_, for a fixed difference d' = 
EA. - EA.', has a sharp maximum of width ~ L\ at 
the point EA. + EA.'= 0. We denote 

~ :t (8~, 8t. +d) d8t. = U (d;211). 

It is easy to establish the fact that 

U(x) = 1-ln(x+ Jfl-f-x2)/xVT +x2 . (24) 

When a sufficient number of levels are con­
tained in the width t.., we may replace the func­
tion :£ in (22) by 

:t (s;_, siC)_, U ((s1.- s1:);2/1) o (8,_). (25) 

Making use of (24) and (25), we get in place of (22) 

where 

g (x) = ( sinh-1 x)/x ( 1 + x2 )'/,. 

4. We now show that the expression 

lo = ~ IUR~,_, j2o(s1,) M!Metf 
),)..' 

(26) 

(27) 

(28) 

differs only by a factor from the value of the mo­
ment of inertia for a solid. We carry out a sum­
mation over A.' in (28), and denote 

p (s0 , r) = ~ cp~ (r) C{l"A (r) o (s,_), (29) 
), 

where p (Eo, r) is the density of particles with 

energy E0• We obtain 

lo = ~ dr p (s0 , r) ((ffnx)2) M/ Mefl· 

Here ( mx )2 is replaced by the value of < ( mx )2 > 
averaged over the angles of the momentum p. 
Since all the directions of p are equally probable, 
then by averaging the operator ( mx )2 = y2pi + 

z2p~- ypzZPy- ZPyYPz over the angles of p, we 
obtain 

We denote 

n' (r) = p (s0 , r) p~;3M,f1, 

Then 

J0 = M ~ n' (r) (y2 + z2) dr. 

In the quasiclassical approximation, the density 
of particles is 

n (r) = Cp~ (r), Po (r) = V2Metf (so-U (r)), 

p (s0 , r) =an (r);aso = 3M,,, n (r)/p~ (r), (30) 

i.e., n' (r) = n (r ), and consequently J 0 coincides 
with the value of the moment of inertia for a solid: 

] 801= ~ Mn (r) (y 2 + z2) dr. 

However, because of the existence of shells, the 
density of levels on the Fermi surface Po = 
J p (Eo, r) dr can differ from the classical value 

p~l = J ( 8n/8E) dr; therefore, 

(31) 

We note that the effective mass does not enter 
into J 0, as expected. 

For a sufficiently deformed nucleus ( {3 ~ A -1/3 ) 

we have Po/ p~l ~ 1 and J 0 = J sol· For small de­
formations ( {3 « A -t/3 ) , when the shell structure 
substantially affects the density of levels, Po I Pel 
>1. 

5. Let us now consider the second component 
in the moment of inertia 

1 __ 11 ~ h~.~IDI~~.. ~ 
2 - .LJ 2EI.EI.' (Et.. + E1 ,) M,11 • 

)..)..' ' 

Multiplying Eq. (20) by f (r) and integrating over 
r we obtain 

. ~"A' f )..'"A ;-, f)..)..'~').. 
- /),. 2j 2Et..Ef..' (Et.. + E1,). =- /),. ~ 2E1,E1: (Et.. + Et..,) 

l.l.' ' IX 

Consequently, 
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Making use of the sharp maximum of 
1/EA. E~\.' (EA. + EA.') with respect to EA_, similarly 
to what was done in the calculation of J 1, we obtain 

(32) 

where g(x) isgivenby(27). 
6. Using thesharpmaximumof 1/EA,EA,'(EA, +EA.') 

we obtain, in place of (20), 

~- [ lllf:~../2~ +h.:~.· (sA - sA'}2/M2 J 
(33) 

Thus the moment of inertia is calculated accord­
ing to the formula 

(34) 

in which one must insert f ( r), found from the in­
tegral equation (33). 

We introduce the quantity 

(35) 

where {3 = 2 (a-b)/ (a +b) is a parameter of the 
deformation of the nucleus, a and b are the 
semi-axes of the spheroid, R 0 = (a+b)/2, and 
n=L 

It is not difficult to show that for K » 1 

(36) 

In the other limiting case, when K/{3 « 1, assum­
ing that the potential U has the form U (z2/a2 + 
(x2 + y2)/b2), we can obtain 

(37) 

where C1 "' 1. 
Thus, for K/ {3 « 1, the moment of inertia of 

the system approaches the moment of inertia of 
an ideal liquid. This result is quite natural. The 
quantity K/ {3 is of the order of a0 /R, where 
a0 = Po /Mll. is the correlation radius of the paired 
particles. When the correlation radius is much 
smaller than the radius of the nucleus, the equa­
tions of the hydrodynamics of an ideal liquid should 
be applicable. 

For {3 -- 0 and fixed fl., J "' {32• 

4. COMPUTATION OF THE MOMENT OF IN­
ERTIA FOR AN OSCILLATORY POTENTIAL 

Let us write the potential U ( r) in the form 

U (r) =-}Men [w~z2 + o)z (x2 + y2)J. (38) 

We have the operator relation 

ffilx = ziJU;iJy- yiJU;iJz = (wz- w;) yzMetf· 

Therefore, 

Thus the matrix element Wl~A.' is different from 
0 only for m' = m ± 1, n' = n ± 1. With quasiclas­
sical accuracy (n » 1, m » 1 ), all four possible 
values of m~A.' are identical. 

Moreover, noting that EA. - EA.' = ± ( Wz ± wy ) , 
we find from (26) 

( e>. - eA') I • x 12 1 , M Jl=Jo-~'g --u- 9JhA' (et--eA,)2o(s>.)Meff 

where 

Similarly, we obtain 

M 
Jo = ~ IIDlfA' 12 o (sA)-

AA' Meff 

Substituting this result in (39), we obtain 

(39) 

(40) 

2. We shall show that Eq. (33) is satisfied for 
f = ayz. As above, we make use of the independ­

·x ence of the matrix elements 9J1A.A.', fA.A.', and 
CfJA. cp~' of the values of A.' for a given value of A.. 

From Eq. (33) we obtain 

~ (gl + g2) ~ IDcf.A·CfiArp~,ll (s;.) 
AA' 

= - 2~ 2 (g1vi + g2vp L] f;.A'Cfli.Cfl~.o (aA)· (40a) 
H' 

(41) 
Substituting (41) in (32), we find 

J2 = Jo (gl + g2) viv;; (vi+ v~) (v;gl + v~g2 ). (42) 
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It is easy to see that the expression (40) goes over 
into J 0 when v1, v2 » 1, while J 2, determined 
from (42), approaches 0 so that the asymptotic 
formula (36) is satisfied. 

For v1, v2 « 1, the relation (37) is satisfied, 
i.e., the moment of inertia approaches the moment 
of inertia of an ideal liquid. 

3. Substitution of numerical values of v1 and 
v2 for the nuclei gives v2 ~ 10, v1 ~ 1, which 
permits us to write down an expression for J in 
the form 

The values of the function <1> 1 (x) are given in 
Table I (for v2 = 10). 

(43) 

5. COMPUTATION OF THE MOMENT OF INERTIA 
FOR A RECTANGULAR POTENTIAL WELL 

1. From Eqs. (26) and (28), we have 

(44) 

We shall show that only such values of A.' are to 
be kept in this sum for which m' = m ± 1 and 
v' = v, where m is the eigenvalue of the projec­
tion of the angular momentum on the axis of sym­
metry and v is the set of remaining quantum 
numbers. 

The relation m' = m ± 1 is the exact selection 
rule for the matrix elements of the operator W(X, 

We shall show that the components with v' ;r v 
contribute little to the sum (44). 

The index v is determined by three quantum 
numbers; for example, in the case of a nucleus 
that is close to spherical, by the radial quantum 
number n, the orbital number L, and the value 
of the total momentum j = l ± ~. If one of these 
quantum numbers is changed, then the order of 
the energy change is I EA.- EA.' I ~ Eo lp0R ~ 
Eo I A 1/3 » ~. and the corresponding value of the 
function g is ~ ( ~p0RI Eo) « 1. Therefore such 
components make a negligibly small contribution 
to the sum (44). 

Small differences I EA.- EA.' I ~ EoA -2/3 can be ob­
tained upon an increase of one quantum number by 
several units simultaneous with a decrease of an­
other. In this case, g ~ 1, but the matrix ele­
ment M~A.' will be small because of the differ­
ence in the number of nodes of the functions CfJA. 
and CfJA.' and, moreover, will contain the factor 
(3, inasmuch as M~A.' = 0 for a spherical well 
at v' ;r v. Therefore, only components with v = v' 
and m' = m ± 1 should remain in the sum (44): 

"" ( •v, m+t- ev, m \ x 2 Jo-Jl= .LJ g 26 j (\ID'lv,m;v, m+tl 
v, m 

+ \ ID'l~, m; v, m-1\2] 0 (svm) iP- • (45) 
eft 

2. Further calculations are carried out for a 
spherical well with effective diameter R0• The 
quantity Jl J 0 is a symmetric function of the 
semiaxes a and b, as can be seen, in particular, 
in the example of the calculations for an oscillatory 
potential. Therefore, choosing in the final result 
a radius equal to any mean symmetric in a and 
b, we determine Jl J 0 with a small error of the 
order of (32• 

For the functions of the spherical well we have 

(46) 

since the large values of j are important in the 
sum (45) and one can replace j = l ± ~ by l. The 
dependence of the energy of the particle on m is 
given by the equality 

Svm = Sv + ~ (m2 / l2 -\'a) (so+ Sv), (47) 

where Ev is the energy of a particle in a spherical 
well, reckoned from € 0• 

Equation (47) can easily be obtained with the 
help of perturbation theory. Carrying out a coor­
dinate transformation that converts the ellipsoid 
into a sphere, we obtain (in first order in (3) the 
perturbation operator 

Q = 1/a ~ (p2 - 3p;)/ Meff· 

Computing the energy by the formula 

Svm = Sv + ~ 'P;, Qc:pl. dr, 

where CfJA. are the eigenfunctions in a spherical 
well, we arrive at Eq. (47). 

Substituting (46) and (47) in (45), we get 

)-, (~m )12-m2 .M 
= "'-l g 612 so --2 - Ptm (so) :;w-, 

lm eff 
(48) 

where Plm (Eo) is the energy density of the level 
with specified values of l and m. Computing the 
volume of the phase space corresponding to the 
given values of l and m, we readily obtain 

(49) 

in a way similar to what was done in the Thomas­
Fermi theory; here 10 = p0R0• Making use of (30) 
and (31), we obtain 
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TABLE I. Values of the functions <1> 1 and <1> 2, determined from 
Eqs. (43) and (51) 

x I ¢,(x) I ¢, (x) II x I $,(x) I$, (x) II x I ¢,(x) I~. (x) II X I ~t(x) I ~. (x) 

0 0 0 0.7 0.32 0.13 
0.1 0.01 0.005 0.8 0.38 0.15 
0.2 0.03 0.02 0.9 0.43 0,17 
0.3 0.07 0.03 1.0 0.49 0.19 
0,4 0.13 0.06 1.1 0.53 0.21 
0.5 0.19 0,08 1.2 0.60 0.23 
0,6 I o.26 0.10 

2 R2 2 M R2 1o=-.sNM o= 15 =xr-Po o· 
eff 

(50) 

Substituting (49), (50) in (48), and introducing the 
variables TJ = mil, ~ = lll0, we obtain 

1 

11 = 1 o {I- ¥ ~ d~ ~3 VI - ~2 
0 

1 

X~ d"f/(I -"f/2)g (xf)}= .fo<P2 (x), (51) 
0 

where K is determined by Eq. (35). 
The values of the function <1> 2 ( K ) are given in 

Table I. 
3. In the case of a rectangular potential well, 

the solution of Eq. (33) is found in analytic form 
only for the limiting cases K « 1 and K » 1. 

The value of J2 is shown to be much smaller 
than that of J 1; therefore, such a solution of Eq. 
(33) is not of practical interest. 

We shall write down without derivation an ex­
pression for J2 in the cases K « 1 and K » 1; 

x---+ 0: 12 = 10x2/6ln (5so/ !'::!.poRo), 

x---+ oo: 12 = 105 in3 (a1x)12I x21n (a2Eo/ !'::!.poRo).. (52) 

where a1 and a2 are numbers of the order of 
unity. 

The equations (52) allow us to conclude that 
J2IJ0 ~ 5% and consequently J1 ~ J. 

6. NEUTRON AND PROTON MOMENTS OF IN­
ERTIA. GYROMAGNETIC RATIO 

1. The calculations carried out above were per­
formed for particles of a single kind. For compar­
ison with experiment it is necessary to consider 
both types of nuclear particles. 

When Z > 20, the Fermi surfaces for neutrons 
and protons move apart and the coupling of neu­
trons with protons is made impossible. Thus for 
Z > 20, there are two liquids -neutron and pro­
ton - which cannot exchange angular momentum 
since the excitations in each of them have gaps. 

Therefore, the moment of inertia of the nucleus 
is equal to the sum of the moments of inertia of 

I 

1.3 1 0.64 0.24 2.0 0.80 0.37 
1.4 0.67 0.26 2.2 0.81 0.40 
1.5 I 0. 71 0.28 2.4 0.83 0.43 
1.6 0.74 0.30 2.6 0.85 0.45 
1.7 0. 75 0.32 

I 

2,7 0.861 0.48 
1.8 0.77 I o.34 3.0 0.87 0.50 
1.9 0.79 0.36 

the neutrons and protons. Denoting by <I> ( K ) the 
ratio Jl J 0 = <I> ( K) computed above, we obtain the 
following expression for the moment of inertia 

(53) 

where Kn and Kp are the values of K for neu­
trons and protons. 

2. The quantities 6-n and 6-P entering into 
Kn and Kp cannot be computed theoretically and 
must be taken from experiment. 

As will be shown below, 6-n is smaller than 
6-p; therefore, 6-n is determined from the first 
single-particle levels. The value of 6-p can be 
found from the experimental gyromagnetic ratio 
for rotating nuclei. The gyromagnetic ratio is 
shown to be much smaller than Zl A.* 

The gyromagnetic ratio for rotating nuclei is 
evidently equal to 

f[rxip]dr JP Z<D(xp) 

g,J'tr><On+ip)Jdr=Jn+Jp =N<D(xn)+Z<D(xp)' (54) 

The measured6 value of gr for Sm152 , sm154, Nd15° 
is gr~0.21±0.04 when JniJp=N<I>(Kn)IZ<I>(Kp) 
~ 3.5 ± 1. 

The function <1>1 ( K) is represented in the in­
terval K = 1 - 2 by <1>1 = CK with good accuracy, 
whence we obtain 

which gives 6-p I 6-n = 1.5 to 2.5 [ <1>2 ( K) gives a 
somewhat larger value]; such a value of 6-p I 6-n 
agrees within the limits of error with the value 
of 6-p I 6-n found from mass defects in this region 
of the table (6-p I 6-n = 1.5 ± 0.3). 

7. MOMENTS OF INERTIA OF ODD NUCLEI. 
MOMENTS OF INERTIA IN EXCITED STATES. 

1. Integrating Eq. (12) over the volume and de­
noting yiV = y 1, we obtain 

*The attention of the author was directed to this fact by 
D. F. Zaretskil. 
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(12') 

The value of y 1 is determined by the density of 
nuclear matter and by the nuclear forces, and 
should not change appreciably from nucleus to 
nucleus. 

We shall show that the D. determined from (12') 
experiences significant fluctuations. We rewrite 
(12') in the form 

1 =- 'h ~~ p (s)dsl2 V 6.2+ s2 , (12") 
-E, 

where E1 ....., E0, p (E) is the energy level density. 
If in the transition from one nucleus to another 

a change op takes place in the density of levels 
close to the Fermi surface, then it follows from 
(12") that the corresponding change in D. is given 
by the relation 

ft E1 

~ op ds I 2 V 6.2 + s2~-- ~ p (s) 6.M dsl2 (6.2 + s2)'1• = 0. 
..,-e:, Eo 

Since 

then 

(55) 

It is natural to expect the fluctuations in p to 
be such that J op dE "' 1; therefore, o.D./ .6. "' lfsp ob. 
....., 10% if we take Po = 3N/2Eo ~ 4 (in the region 
of the rare earths) and D.= 0.8 Mev. This esti­
mate agrees well with the fluctuating values of D. 
found from mass defects or from the primary 
levels. 

The fluctuations in the quantity .6., together 
with the fluctuations of the sum (34) which deter­
mines J/ J 0, lead to appreciable fluctuations in 
the moment of inertia, oJ/ J ....., 20%. 

2. Along with the fluctuations that lead to a 
random change in the moment of inertia, there is 
a systematic effect of decreasing D., and conse­
quently of increasing moment of inertia, in the 
transition to an odd element. 

We shall consider the excited state of the sys­
tem. It can be shown that the equation for D. 
changes in the following fashion:5 

(56) 

where nA. is the number of quasiparticles. 
The transition to an odd nucleus must be con­

sidered as the appearance of a single quasiparticle 
with an energy closest to E0, i.e., n~ = 0, n~ = 
OA.A.1, EA,1 ~ D.. From (56) we get, by analogy to (55), 

(6.'- 6.") Ill= 112 p0 6.", (57) 

where D.' and D." are the corresponding values 
for even and odd nuclei, D. = (D.' + .6.")/2. 

The change in the moment of inertia for a change 
in N is given by the expression 

D..n J~ 1 
= 0.9 --;:;;-y2 A"' (58) 

'-"n Po'-"n 

The latter equation is obtained with the help of (57) 
Knd ln <P1 2 ( Kn} 

and the approximate formula ' ~ 0.9. 
dKn 

Similarly, we obtain the change of moment of 
inertia in transition to odd Z: 

J" -J' J~-J~ J~ D..p 
-J-,- = -J-,- = J' 0,9 P/:).." 2 • (59) 

Pop 

As will be shown below, Eqs. (58) and (59) agree 
well with with the experimental data. 

3. An appreciable increase in the moment of 
inertia should occur in single-particle excitations 
of the nucleus. Thus in excitation with formation 
of a single hole and a single quasiparticle we get 
from (56) a relative decrease in D. that is twice 
as large as in the transition from even-even to 
even-odd nuclei, and consequently a twofold rela­
tive change in the moment of inertia. 

8. DETERMINATION OF D. FROM THE MASSES 
OF THE NUCLEI 

From the definition of Green's function, it is not 
difficult to obtain 

"' I C<DN+l' a; <D'Jv) J2 
G"- = LJ e- £ 8 (N + 1) +Eo (N) + io 

s 

(60) 

aA., a~ are the operators of annihilation and crea­
tion of particles in the state A.. 

Comparing (60) with (9) we obtain 

E0 (N + 1)-E0 (N)= 6.+s0 , 

£ 0 (N)- £ 0 (N- 1) =- 6. + s0 • 

(62) 

(61) 

Equations (61) and (62) permit us to find D. 
from the binding energy of the nuclei. A much 
more exact expression can be obtained if we elim­
inate from E ( N) the dependence on N that is 
not connected with pairing. For this purpose we 
set up an expression in which the components with 
first and second derivatives in N' = N are elimi­
nated. The relation 
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TABLE II. Values of ~n and ~p computed from mass 
defects for certain elements according to Eqs. (57) 

and (63) 

Smiso 1.32 1.64 Gdls7 0. 72 - Hf17B 0,62 - Th2a1 0.56 0.81 
Gdl54 1.15 - oy1s2 0.82 - Hf1<9 0,42 - Th2a2 0,55 0.78 
Gd1ss 0.92 - Dyisa 0.62 - Th2ao 0.76 1.05 u2as 0,64 0,85 

TABLE III. Values of the moments of intertia, the parameters 
of deformation (3, the quantities Kn and Kp determined 

from {64)* 

Element (37 (J /Jo)rect I (J fJ,) osc I (J/J,) exp7 

Ndlso 0.26 0.54 0.94 0.15 0.38 0,35 
sm1s2 0.24 0.65 1:02 0.17 0.43 0,38 
Gd154 0.26 0.52 0:88 0,13 o:35 0.36 
Gd1ss 0.33 0.87 1.37 0.22 0.57 0.48 
Gdl57 0.29 0.93 1.60 0,22 0.64 0.60 
Dy162 0.30 0.84 1.43 0.23 0.57 0.50 
Hf179 0,20 0.99 1. 75 0.27 0.66 0.52 
Qg186 0,18 0,44 0.69 0,09 0,26 0.28 
Th2Bo 0.22 0,63 0.95 0,15 0.40 0.43 
Th232 0.22 0,84 1.42 0,24 0,60 0.44 
u2as 0.24 0.83 1.29 0.22 0.54 0,43 

*To calculate Kp when L\p is not known from mass defects, we assume 
L\ jL\ = 1.5. (J/J 0 ) is the computed value of the moment of inertia for an p m osc . 
oscillatory potential. 0/Jo)rect is the same for a rectangular potential well. 

114 [3£ (N +I)- 3£ (N) 

+ E (N- I)- E (N + 2)] = L\. (63) 

satisfies this condition. The values of ~n,p and 
~" found from (57) and {63) are given in Table II. n,p 

9. COMPARISON WITH EXPERIMENT 

1. To compare Eqs. (43) and (51) with the ex­
perimental moments of inertia, we express K 

and v1 in terms of observed quantities. As was 
pointed out aboye, one should use for R0 in (35) 
a mean radius, for example, R 0 = (a+b )/2. We 
obtain R0 = R ( 1 + (3/3) where R3 = ab2• Taking 
R = 1.2 x 10-13 A 1/3 em, we find 

s~ =52 (M I Mett) (N I A)'1". p~R = 1.9 ·N'1•, 

;3 27 (N)'/, M 
Xn = 1 + ~I 3 t.nA'Ia A Meff. (64) 

here ~n is in Mev. We have similar expressions 
for protons. 

We select w0 = ( wy + w z)/2 from the require­
ment of coincidence of the mean square < r 2 > 
for rectangular and oscillatory potentials. We 
find <y2> = e-0 /4w~ = R~/5. It is easy to obtain 
expressions similar to (64): 

s~ = 76 (M I MeJJ) (N / A)'1•, p~R = 2.3 N'1•, 

(65) 

There are reasons for thinking* that the effec­
tive mass Meff differs slightly from the mass of 
the nucleon M. 

In Table III and in the drawing are shown the 
values of K for Meff /M = 1. As is seen from 
the drawing, all the experimental values of J/ J 0 

lie between the two theoretical curves. 
2. To compare Eqs. {58) and {59) with experi­

mental data, we compute the mean value of the ob­
served moment of inertia for a group of nuclei with 
neighboring values of N and Z. The value aver­
aged over five elements in rare-earth group is 
equal to: for Z, N even- (J/J0 ) = 0.42; for 
Z even N odd- (J/J0 ) = 0.53, (J"-J')/J' = 
0.26. From Eq. (58) we obtain (J"- J')/ J' = 0.32. 
For the transition to even N and odd Z we ob­
tain from (58) and (59) 

*The effective mass also enters into the expression for the 
orbital magnetic moment of the nucleon. For a significant dif­
ference between Meff and M, the magnetic moments of the 
nuclei would not fit between the Schmidt curves. 
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Experimental values of J/J0 as functions of Kn· Theoreti­
cal curves of J/J0 for an oscillating potential (upper curve) 
and a rectangular potential well for Jn/Jp = 2.5. 

in agreement with the fact that the transition to 
an odd proton changes the moment of inertia much 
less than the transition to an odd neutron. 

The author expresses his gratitude to L. D. 
Landau, D. F. ZaretskH and A. I. Larkin for inter-

esting discussions, and also to I. M. Pavlichenkov 
and M. G. Urin for compiling the tables. 
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