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A study is made of the invariant angular operators in terms of which the scattering matrix for re
actions of the type a + b - a! + b' + c' can be expanded, and which are convenient for angular and 
polarization analyses of such reactions. The angular operators are obtained in explicit form for 
reactions in which the spin of the system does not exceed unity, and also for analogous reactions 
involving y-ray quanta. 

1. INTRODUCTION 

IT is convenient to carry out angular and polariza
tion analyses of nuclear reactions by means of the 
invariant angular operators in terms of which the 
scattering matrix or scattering amplitude can be 
expanded. We have previously1 studied and con
structed such operators for reactions of the type 
a + b - a' + b'. Ciulli and Fischer2 have construc
ted the first few angular operators for reactions 
of the type a + b - a' + b' + c' in which the spins 
of the initial and final system are equal to 1;2. In 
the present paper the angular operators are con
structed for reactions a + b - a' + b' + c' in which 
the spins of the initial and final systems do not 
exceed unity, and also for analogous reactions in
volving y-ray quanta. 

2. GENERAL REMARKS 

The initial and final states of. the system in the 
reaction a + b - a' + b' + c' are defined by the 
momenta Pa. Pb and p~, Pb• p~ of the particles 
a, b and a', b', c', and the spin coordinates a and a' 
of the spin of the system. The momenta of the par
ticles are connected by the relations 

Pa + Pb = P~ + P~ + P~ = P, 

Ea + Eb = E~ + E~ + E~ = E, (1) 

where Ea = (p~ + m~) ~ is the energy of particle 
a, and so on, and E and P are the energy and 
momentum of the system. In the center-of-mass 
system (P = 0) we can introduce, instead of the 
momenta of the particles, the momenta 

(2) 
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and (cf. reference 3) 

pl = p~-p~. P2 = - (p~ + P~) = P~· (2') 

To the momenta p, Pt• p2 there correspond the 
orbital angular momenta 1, 11, 12 (1 is the orbital 
angular momentum of the system a + b, 1t that of 
the system a' + b', and 12 that of particle c'), and 
the total angular momenta J, J' of the initial and 
final systems are connected with these orbital an
gular momenta by the relations J = 1 + S, J' = 
11 + 12 + S', where S, S' are the spins of the initial 
and final systems. Using the momenta (2), (2') 
and the relations (1), we can see without difficulty 
that, as the independent variables of the initial 
system, we can choose the quantities 

E, k, 01:, (3) 

where k = p/p, and as the independent variables of 
the final system the quantities 

(3') 

where kt = ptfpt , k2 = PdP2. 
In the center-of-mass system the scattering 

matrix S for the reaction a + b - a' + b' + c' de
pends on the variables (3) and (3'); it is a matrix 
(operator) in the spin variables a, a' and a func
tion of the remaining variables. We shall be in
terested in the dependence of the scattering matrix 
on the variables k, a and k1, k2, a'. Therefore we 
shall write the S matrix in the form S(k1k2a'; ka) 
= [S(ktk2; k)Jaa'• omitting the variables E, p~. If 
the matrix S is invariant with respect to rotations 
and reflections, it can be expanded in a series in 
the angular operators invariant with respect to ro
tations and reflections, LJv 'v(k1, k2; k): 
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S(k1, k~; k) ~~ ~ SNvLNv(k1, k2; k). (4) 
J'l';' 

The coefficients SJ v, v in this expansion are func
tions only of the total energy E and the absolute 
value p~ of the momentum of particle c'. 

The angular operators are scalar products of 
the J vectors ¢JMv(k) and lfiJMv' (ktk2) of the in
itial and final states: 

LNv (k,kz; k) = L; YnN (k1k2) ~;Mv (k). 
.w (5) 

The numbers J, M, v denote respectively the total 
angular momentum, its projection, and a set of 
eigenvalues of operators commuting with the total 
angular momentum, for example the spin of the 
system, the orbital angular momenta, etc. The gen
eral properties of the operators (5) are the same 
as in the case of the reactions a + b - a' + b' (cf. 
reference 1). In particular, these operators are 
Hermitian: 

Lh•v(klk2; k) = LJvv'(k; k,kz), 

are orthogonal and normalized: 

~ LJ:v"v (k1k2; k) LNv; (k1k2; k0) ~~ ~k; 

and have the property of completeness: 

'l "\ + k . k' k k . k) dk, dk, -- 0 (k' k) LJ LNv( 1k~, )LNv( 1 2• 4rc 4rc- - ' 
J-J ~' 

where 

~ o (k'- k) dk / 4r: = I and so on 

Since 

Sp L.rw, (k, k) = (2J + I) ovv,. 

Sp ~ LJw, (k,k2; klk~) dk, 4r: = (2J-,- l) Ow,, i=!.2, 

(6) 

(7) 

(7') 

(8) 

(8') 

the coefficients SJv 'v of the expansion (4) can be 
calculated by the formulas 

SNv = 21 ~ fSp ~ ~~ ~~ L.fv·.(k,k2 ; k) S(k1k2 ; k); (9) 

1 I dk dk, ..L 

SN., = :U+ 1 Sp j.fr; 4r:; S(k,k2; k)LJv·v(k1k2; k), i = 1.2. 

We shall-describe the system a+ b by the J 
vector 

1 )l LH-!<; S:< y (k) Q 
YJ,\1/S (k) =..:...: CJ.\1 /AI-:,. s,,, (10) 

where Y lm (k) is the orbital function and Qs/J- the 
spin function of the system; J = 1 + S. We shall 
describe the system a' + b' + c' either by the J 
vector 

(lla) 
m, 

where S' is the spin of the system, lto 12 are the 
orbital angular momenta, 1' = lt + 12 is the total 
orbital angular momentum, and J = 1' + S' is the 
total angular momentum, or else by the J vector 

I (k k ) ~ ct,M-m; jm y (k ) DS' (k ) Y Jhlv' 1 2 = L.J JM l,M-m 2 jl,m 1 • 
rn 

(11b) 

where 81 is the spin of the system, Zt, z2 are the 
orbital angular momenta,* j = lt + S', J = j + l2. 

By means of Eqs. (5), (10) and (11) one can con
struct the angular operators LJv 'v(ktk2; k). For 
this purpose it is convenient to use the coordinate 
system with its x, y and z axes along the vectors 
[k x k 1] x k, [ k x k 1], k and the invariance of the 
angular operators. 

3. THE EXPLICIT FORM OF THE ANGULAR 
OPERATORS 

We shall present first the form of the angular 
operators (polynomials) for spinless particles. 

Case S = S' = 0: 

LL,L,z (k1k2 ; k) 

= V (2ld- I) (2! 2 -T- I) (2! + I) [Cl~o; 1'0 P z, (x1) P z, (x2) 

where 

a;,;J = f {(x1x2- x12 - i ([k, x k2J k)t' 

+ q (x1X 2 - X 12 -,- i ([k1 x k2 ] k))m}, 

x, o= (kk,), x2 = (kk2), x,2 = (k,k2), 

q = (-1)1,+1,-1; P)m) = dmPz/ dx'"; 

(12) 

(13) 

*We shall not consider here the coupling j = 12 + S', J = j 
+ 1,, since it is equivalent to the coupling j = I, + S', J = j + 12 

and the notations p, =-(p~ + p~) = p~, p2 = p~ -p~ instead 
of Eq. (2'). 
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q = +1 or -1, corresponding to conservation or 
change of the intrinsic parity of the system in the 
reaction. The angular polynomials (12) satisfy the 
conditions 

Lt,t,t (k1 k2; k) = (- I /'- 1 ~ ;~1: i~ Lt,u, (k2k; k1) 

= (-1/'-1 ~~~2~~ Lu,t,(kkl; k2) 

= (- 1) 1'+~,-t Lz,t,t (k2k1; k). (14) 

A. Coupling 11 + 12 = 1', 1' + S' = J 

We now note that the angular operators 
LJv'v(k', k) for the reaction a+ b- a' + b' can 
be represented in the form of a certain invariant 
differential operator OJv 'v(L', T), which depends 
on the orbital angular momentum operator L' = 
-i[k'8/8k1 ] and the vector matrix T in the spin 
space of the system, and acts on the angular poly
nomial for spinless particles: 

LJI'S'IS (k', k) = OJI'S'!S (L', T) Lt' (k',k). (15) 

Starting from Eqs. (lla), (10), and (5), we can 
show without difficulty that the angular operators 
for reactions a + b - a' + b' + c' can be repre
sented in the form 

Case S = S' = %: 

Ln·t,t,S'ts (k1k2; k) = OJI'S'ts (L', T) Lt,t,t' (k1k2 ; k), (16) 

where OJz'S'ZS is the same operator as in Eq. (15), 
L' = L1 + L2, and Lz1z2 z,(k1k2; k) is the angular 
polynomial (12) for s·pinless particles.* With re
gard to Eq. (16) we note the following. Since parity 
is conserved in the reaction a + b - a' + b' + c', 
the quantity z1 + z2 - l is either even or odd, de
pending on whether the intrinsic parity of the sys
tem is conserved or changes in the reaction. There
fore the angular operators LJv'v(k1k2; k) are either 
scalars (if the intrinsic parity is conserved and the 
quantity q = (-1)11 + z2 - l is equal to +1) or pseu
doscalars (if the intrinsic parity changes and q = 
-1). As for the angular polynomials Lz 1z2z' and the 
operators OJZ'S'ZS that appear in Eq. (16), they can 
be either scalars or pseudoscalars, independently 
of the conservation or change of the intrinsic par
ity in the reaction; namely, Lz1z2z' is a scalar 

(pseudoscalar) if q' = (-1)11 + lz - l is equal to 
+1(-1), and OJZ'S'ZS is a scalar (pseudoscalar) 

if q0 = (-1) 1' -l is equal to +1(-1). We note that 
q = qoq'. 

We shall give the explicit forms of the opera
tors OJZ' S' zs(V, T) for the cases in which S and 
sP do not exceed 1. 

OJI''M'f, (L', o) = 2 (2l~+ 1) [J -\ ~ + (- I (-J-t-'/, (oL')] [(q0 + I)+ (q0 - I) (ok)]; (17) 

Case S = 0, S' = 1: 

1 w / 2J + 1 [ ( 1 1 ) J 
21'+1V J+ 1; 2 :p;2 -i(T[kxL'])± J+2=F2 (Tk), J=l=l'±!, (18) 

Olt'll (L', T) = 
1 

VJ (J + 1) (TL'), J =I= I'; (19) 

Case S = 1, S' = 0: 

1
1 I 2J + 1 [· , ( 1 _ 1) J 

, 2t'+1V J+';z=F'h t(Tfk.xL])±\J+2+:r (Tk), 
OJt'tl (L ,T) = 

1 

(20) 

V J (J ~- 1) (TL'), J=l=l'; (21) 

Case S = S' = 1: 
a) q0 =+1, 

(21'-t- 1) (/+'/2=j=lJ.) {± (J + ~ =F {) [1 + (SL')] + (SL') (SL')}, J =I± 1 =I'± 1, 

~ {- 2 ( J + i + })2 + (2J + 1) [(J + + ± i) (Sk) 
(21' + 1) J (J + 1) \ -

± i (S [kx L'])] (Sk) ± (J + + +{) (SL') + (SL') (SL')}, J = 1±1 =l'=f1, 

1 
J (J + i) {J (J + 1)- (SL ') (SL')), J=l=l'; 

*A similar representation for S = S' = ~ is used in reference 2. 

(22) 
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b) q0 = -1, 

1 • I 2J + 1 [- ( 1 1 )' 
(21'+1)(J+'I•=F'/z)V J+'i•±'h + J+2=F2 (Sk)--

-i (S (kxL'D] (SL'), J= l ± 1 ~~ l'. 

1 ./'IT+1-[ ( 1 1) ~ 
(21'+ 1) (J +'i2=F'/2) V ~±'!2 =F J + 2 =F 2 (Sk) -t-

=F (J + + ± {-) (SL') (Sk) + i (SL') (S (k x L'])l J = l = l' ± 1. (23) 

B. Coupling* It + S' = j, j + l2 = J 

If, on the other hand, we use the formulas (llb), 
(10), and (5), then for integral S and S' the an
gular operator for the reaction a + b - a' + b' + c' 
can again be reduced to a certain invariant dif
ferential operator acting on an angular polynomial 
of the form Ljz2J(k1k2; k) [Eq. (12)); we have 

LJjl,S'l,lS (klk2; k) = Ojt,S', JlS (L, Ll, T) Ljt,J (klk2; k). (24) 

In particular, we get for the operators 

OjltS'; JZS 
Cases S = 0, S' = 1 and S = 1, S' = 0: 

On1 = (Oll (k, L) T); (25) 

Case S = S' = 1: 
Ojt,I; Ill= (OJ! (k, L) Ojt, (kl, Ll)) 

-(On {k, L) S) (OJt, (k1 , L1) S), 

where 

OJJ±l (k, L) 

(26) 

V(2J + 1)(J + 'I• ± 'I•> [- i [k.x L) =F ( J + + ± ~) k] , 

OJJ(k, L) = L 
YJ(J+1J (27) 

If, on the other hand, S and S' are half-integral, 
the angular operator can be constructed directly, 
as in Eq. (12). In particular we have: 

Case S = S' = ~: 

X {(zl ± m + ~) P)~-·;,) (x1) =F i (a [k1x kl) P}~+'/,) (x1)} 

X {a<q> - (ak) a<-q> } {ct, '!z-m; fmp<m-'1.) (x ) 
m-1/2 m-1/ 2 1 1/2 l2 2 

+ (- 1 )1+'!.-l [ ([2-m + +) ( [2 + m + +) r·;, 
X c5s;,·-m; jm i (a [ k2 X k]) P}:+'/,) (x2)} . (2 8) 

The signs ± correspond to j = 11 ± ~-
We note that for the reactions 1r + N- 27[' + N' 

*Cf. footnote *,page 154. 

and N1 + N2 - N~ + N~ + 1f1 the formulas more 
convenient in practice are Eqs. (28) and (24), and 
not Eq. (16), since in this case the quantum num
bers Z1 , j describing the. final system correspond 
to the quantum numbers Z', J describing the final 
system in the reactions 1r + N - 1r' + N' and 
N1 + N2 - N~ + N~. Therefore if the matrix ele
ments SJoZbS~z0s0 are important for the reactions 
1f + N - 1f' + N' and N 1 + N2 - N~ + N~, it can be 
assumed that an important part in the expansions 
(4) for the reactions 1r+ N - 21f' + N' and N1 + N2 
- Ni + N~ + 1r' is played by the matrix elements 
SJjZ1 S'Z2zs for which j = Jo, Zt = l~, S' = S~, l = 10, 

S = 80• 

4. REACTIONS INVOLVING 'Y -RAY QUANT A 

The wave function (eD~~ (k)) of a photon with 
momentum k, angular momentum l, polarization 
e, and multipole character A. (A. = 1 or 0 for mul
tipoles of electric or magnetic type, respectively) 
is connected with the function Yzm(k) of a particle 
of spin zero by the relation 

<rJ 1 ( a \ k (eDtm (k)) = , 1~ e "k) Ytm ( ), 
f l (l + 1) u 

parity=(- 1)1, 

to) 1 (· k a ) (eDtm(k))=V t[ xe]-:or Ytm(k), 
. I (l + 1) v 

parity= (-1)1H. (29) 

Therefore the construction of the angular opera
tors for a reaction involving a photon reduces to 
the application of the "polarization" operator 

[l(l + 1))-~(e8/8k) or [l(l + 1)(~(i[k x e)8/8k) to 
the angular operators of the analogous reaction, 
in which the photon is replaced by a scalar or 
pseudoscalar particle with spin zero (cf. reference 
1). That is, if one has to construct the angular 
operators LJv'vA. (k1k2; k) for the reaction y + b 
- a' + b' + c', one must construct the angular op
erators L£.iJ,v<k1k2; k) or Lj'i!v(k1k2; k) for the 
reaction a + b - a' + b' + c', where a is a scalar 
or pseudoscalar particle with spin zero, and then 

apply to them the operators [1(1 + 1)(~(e8 /8k)* or 
-~ 

[l(l + 1)) · (i[k x e)8/8k)*, respectively: 
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Llv'v),(klk2; k) 

_ fli(/ + 1W'1•(e a1ak)*L)~~v(k1k2 ; k), A= 1, 

- [!1 (/ + 1W'1• (i [k xe] a I ak)" Lj-;,~) (k1k2; k), A= 0, (30) 

Similarly, the angular operators LJv 'A. 'v(ktk2; k) 
for the reaction a + b - a' + b' + y' are connected 

. (q) . (-q) . 
w1th the operators LJv'v(ktk2, k) and LJv'v(ktk2, k) 

of the reaction a + b - a' + b' + c', where c' is a 
scalar or pseudoscalar particle with spin zero, by 
the relations 

{
[12 (12 + 1)]-'1• (e'a I ak2) LWv (klk2; k), A'= 1' 

= [I, (12 + 1)]-'h (i [1<2 X e'] a I ak2) L)-;,~) (klk2; k), A'= 0. 

(31) 

Here it is assumed that the angular momentum and 
momentum of the photon are l2 and P2· Finally, 
the angular operators LJv 'A., vA. (k1k2; k) for the 
reaction y + b - a' + b' + y' are obtained by ap
plying the operators 

[l 2 (ld-l)l(l+ 1)J-'1'(e'o/ok2)(ea;ak)* 

and [l2 (l 2 + l)l(l+ I)J-'1'(i[k2xe']o/ok2)(i[kxe]o;ok)* 

to the angular operators for the reaction a + b -
a' + b' + c', in which the particles a and c' have 
spin zero and the same parity and by applying the 
operators 

U2U2+ I )l(l + 1 )J-'1'(e'ojok2)(i[k x e]ojok) * 

and [l2(l2+ I) l(l + 1 )]-'1• (i[kz X e'] a;ak2) ( eojok)* 

to the angular operators for the reaction a + b -
a' + b' + c', in which particles a and c' have spin 
zero and opposite parities. 

5. CONCLUSION 

The angular operators completely determine 
the angular distribution and polarization of the 
particles in the transition Jv- Jv'. Since the dif
ferential cross section dcr /d!J and the polariza
tion of the scattered particles (i.e., the mean values 
<!.1>' of certain spin operators !.1) are connected 
with the scattering amplitude T = S - 1 by the re
lations 

d'j I dQ = Sp (TpT+), <D.)' = Sp (QTpT+) I Sp (TpT+), 

where p is the density matrix of the incident par
ticles, by measuring dcr /d!J and <!.1>' experimen
tally and using the expansion (4) for the scattering 
matrix, one can find the coefficients SJv' v (E, Pc), 
i.e., carry out the phase-shift analysis. 

On the other hand, if the scattering matrix obeys 
some known equation, the problem of finding this 
matrix is made easier if, by means of the expan
sion (4), one effects a separation of the angular 
and spin variables from the variables E, Pc• and 
reduces the problem to that of finding the 
SJv'v (E, Pc), which depend only on E and Pc· 

The writer is grateful to I. E. Tamm, who 
stimulated this research, and also to J. Fischer 
and S. Ciulli, who made their work available be
fore its publication. 
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