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It is shown that the phenomenological Ginzburg-Landau equations follow from the theory of 
superconductivity in the London temperature region in the neighborhood of Tc. In these equa
tions there occurs, however, twice the electronic charge; this is related to the physical mean
ing of >l!(x) as the wave function for Cooper pairs. The constant K turns out to be small. The 
problem of the surface energy for the boundary between the normal and superconducting 
phases in the neighborhood of T c is discussed. 

IT is well known that the behavior of superconduc
tors in a magnetic field in the neighborhood of the 
critical temperature is qualitatively well described 
by Ginzburg and Landau's phenomenological theory. 1 

We shall show in the present paper that equations of 
the same type as those in Ginzburg and Landau's 
theory follow indeed from the theory of supercon
ductivity. 

We shall start from the equations for the ther
modynamic Green functions3•4 which we obtained 
earlier.2 These equations are in a magnetic field 
of the form 

{- _?__ + -1 (_?__- ieA (r) \)2 + ~~} G (x x') a-. 2m ar , 

+ 11 (r) p+ (x, x') = o (x- x'), 

{~ + 2!1 (~ + ieA (r)Y + !L} p+ (x, x') 

- 11* (r) G (x, x') = 0; (1) 

where 

11* (r) = gf+ ('•. r; '• r). (1') 

The last relation expresses ~(r) in terms of the 
coupling constant and the value of the function 
F+(x, x') for equal arguments. If there is no field, 
~ = const. The quantity 2~ is in that case the en
ergy gap in the spectrum. F+(x, x') tends, in fact, 
logarithmically to infinity as x = x'; this corre
sponds to the well known logarithmic divergence in 
the equation determining the gap when one integrates 
in momentum space. In the papers by Bardeen, 
Cooper, and Schrieffer5 and Bogolyubov6 this diver
gence was removed by cutting-off the energy of the 
interacting electrons at distances of the order of the 
Debye frequency w from the Fermi surface; we 

shall do the same in the following. One verifies 
easily that such a cut-off corresponds in the co
ordinate representation to a "spread out" in Eq. (1') 
over a distance of the order tiv /w . 

Let us go over to the Fourier components of the 
Green functions G(x, x') and F+ (x, x') with respect 
to the difference of the variables4 u = T -T', for in-
stance, 

n 

+!IT 

m ( ') - 1 \ '"'n" G ( '. ) d ..v., r, r - 2 ) e r, r, u u, 
-l!T 

where wn = 7r(2n + 1)T (n = ... -1, 0, 1, ... ) . Equa
tions (1) go over into the following equations for 
the Fourier components ®w(r, r') and & ~ (r, r'): 

{iwn + 2~ (fr- ie A (r) Y + :-"} @l., (r, r') 

+ 11 (r)l};i"(r, r') ~= o (r-r'). 

f . ' 1 (. a . . A ( l)2 . } q:+ ( r') ~_- IWn 1 2m Fr, te r , ~ 0 ., r, 

-/1*(r)@lo, (r, r') = 0, 

and condition (1') can be written in the form 

j.* (r) = T lJ &t (r, r). 
n 

(2) 

(2') 

We introduce, finally, <liw (r, r'), the Fourier 
component of the Green function for an electron in 
the normal metal in a magnetic field. The equation 
satisfied by @iw(r, r') can be written in two ways: 

or 
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{iwn + ~n (a~· + ieA (r') r + fL} @"' (r, r') = o (r- r')o 

It is convenient to use the function ®w(r, r') to 
write Eqs. (2) in integral form, using the second 
of Eqso (3): 

@"' (r, r') = @"' (r, r')- ~ ®"' (r, s) D. (s) iJt (s, r) d3 s, 

iJt (r, r') = ~ @"' (s, r') D. • (s) @_"' (s, r) d3 So (4) 

Before we proceed, we find out what the func
tion &iw(r, r') is equal too If there is no magnetic 
field, one sees from (3) that 

n;o ( ') m {[ 0 0 I wn I J R} v"' r- r = - ZrtR exp t s1gn wp0 - -v- 0 (5) 

Here 

signw=wjfwf, R=Jr-r'[, [L=P~/2m_?>Jwlo 

®w(r, r') in a magnetic field differs from (5) by a 
phase factor. Indeed,* because Po is a large quan
tity we can use the quasi-classical approximation 
to determine @\w(r, r'), i.e., write it in the following 
form: 

@"'(r, r')=eicp(r,r')@J~(r-r'), rp(r, r')lr=r·=Oo (6) 

Substituting (6) into (3) we find for the addition to 
the action of cp(r, r') 

(n, V,rp(r, r'))=!:_(n, A(r)), n=(r-r')!Jr-r'[o (7) 
\ c 

Near the transition temperature .6.(r) (and at the 
same time U:t,(r, r')) is small. We shall therefore 
expand Eq. (4) in powers of .6. and .6.* and express 
lY~(r, r') up to terms of the fourth order, and 
®w(r, r') up to terms of second order in .6., inclu
sive. The substitution of the expression obtained 
for 5't (r, r') into (2') gives one equation connecting 
.6.(r) and A(r): 

D.· (r) = gT ~ ~@"' (r, r') @_., (r, r') Ll• (r') d3r' 
n 

- gT 2J ~ ~ ~ @t (s, r) @_"' (s, I)®"' (m, I)@;_"' (m, r) 
n 

(8) 

The important distances in Eq. (8) are of the order 
; = nv/Tc, since it can be seen from (5) and (6) that 
the Green function &w (r, r') decreases exponentially 
for R » ;0 . At the same time, the changes in the gap 
.6.(r) and the field A(r) take place at distances of the 
order of the penetration depth which is much larger 
than ; 0 near the critical temperature. For the same 
reason the phase cp(r, r') in (6) is small near T c and 
equal to 

rp (r, r') ~.!..._(A (r'), r- r')o 
c 

(9) 

*This was pointed out by L. D. Landau. 

Using these facts we can perform the integration in 
Eqo (8) o 

The first term on the right hand side is of the 
form 

g ~ K (r, r') D.• (r') d3r', 

where the kernel 

K(r, r') =K0 (r- r')exp{ 2~e (A(r'), r-r')} 

has a singularity for R = lr- r'l = 0: 

Ko (R) = m2T I (2rrR)2 sinh (2rrT R / v)o 

This singularity is connected, as was pointed out al
ready in the foregoing, with the cut-off of the inter
action at the Debye frequencies w. 

Introducing this cut-off we get 
~ 

~ Ko (R) daR=~~~ ~tanh~~ I 2T) dE 
0 

(10) 

where the transition temperature T c is connected 
to the gap in the energy spectrum at absolute zero 
in the well-known way5: 

Expanding the exponents in the Green functions in 
terms of cp(r, r ') using the fact that .6.(r) and A(r) 
vary slowly near T c• and eliminating w and g by 
using (10) we get the following equation 

{ 2
1m(! +2ieA(r)Y 

+ _!__[ Tc-T _ _2fQL_I D.() 12]}D.•() = 0 (11) 
/.. Tc 8("Tc)2 r r ' 

where A. = 7 !; (3) Ep/12('rr Tcf (/;(x) is here Rie
mann's zeta function). 

To get a second equation connecting .6. and A 
we shall now calculate what the current density 
j (r) is equal to. To do this we use the relation 
expressing j(r) in terms of a Green function: 

o { ie 2e2 1 
J (r) = -;:n(Y'r·- Vr)G (x, x')- me A (r) G (x, x')Jt•=t+O: r=r' 

(the additional factor of 2 is due to a summation 
over spin). We note that if we substitute every
where the Green function for the normal metal in 
the form (6) and then sum over frequencies we get 
no contribution to the expression for the current, 
as should be the case. The total current is thus 
equal to 

j (r) = _!!___ (Vr·- V.) oG (x, x') lx~x·. m 

where 

(12) 
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~a (x, x') lx=x' 

=~ - T ~ ~ ~ @lo, (r, s) &"'(I, r) @L"' (I, s) L\ *(I) L\ (s) d3s d31. 
n (13) 

Restricting ourselves in the expression for the 
current to terms linear in A and assuming A(r) 
to vary slowly with r in the London temperature 
range near T c we get 

"(r)={_!!__(L\ o!:l* -L\*o!:l) __ 4e2 !!:l\z.A}7~(3)N 
] m or or me 16 (1tT)2 

(14) 

We shall introduce a "wave function" >¥ (r), pro
portional to .6-(r): 

'F (r) = L\ (r) V~'C (3) N I 4~tTc· (15) 

The set of Eqs. (11) and (14) takes then a form 
completely analogous to the equations of the phe
nomenlogical Ginzburg- Landau theory: 

{..,!___ ( j__- ie•A (r))2 

2m \Or 

++[Tc~T-! i'¥(r)l2 ]}'¥(r)=0, 

• ( ) - ie* (nr• o'¥ nr o'¥' \ e*Z A I nr 12 J r - - ;[i1l I Tr - I Tr) - me I ' (16) 

where e* = 2e, N is the number density of the 
electrons in the normal metal and A. was defined 
after Eq. (11). There is a difference, however, in 
that (16) contains the electronic charge e twice, 
clearly owing to the physieal meaning of w(r) as 
the wave function of a Cooper pair. 

These equations arise thus in a natural way in 
the theory of superconductivity in the London region* 
near Tc. The phenomenological constant defined in 
the same way as in the old theory, but with e* = 2e, 
can now be evaluated and turns out to be equal to 

x = 3 Tc(rc I v)'l• (c I ep0 ) V 2 I 7C(3). (17) 

The region of applicability of Eqs. (16) is small 
for sharply expressed Pippard metals and occurs 
very near Tc; at large distances from Tc the local 
relation (14) ceases to be valid. 

For metals of the London type the region of ap
plicability of (16) is determined solely by the small
ness of the ratio (T- Tc)/T0 • 

The possibility to apply (16) to describe the 
properties of thin films in a magnetic field with the 
microscopic value (17) of the constant K is limited 
by the fact that usually films are polycrystalline 
specimens with grain sizes of the order of the film 
thickness. The presence of boundaries between dif
ferent crystals will act like the presence of foreign 
impurities. One must therefore possibly describe 

*In reference 5 the assumption was stated that some quan
tity related to the gap should play the role of the expansion 
parameter 'I' in the theory of reference 1. 

real films in the microscopic theory from the same 
point of view as superconducting alloys. 

We note now that to evaluate the difference in the 
free energy of the metal in the normal state and in 
the superconducting state in a magnetic field we can 
use the following formula: 

FsH- Fn =- (1 1"-N) ~ J '¥(r) l4 d3r. (18) 

Indeed, we shall use the thermodynamic relation 

oO I og (r) = - <Hint (r) >I g (r), 

where according to (5) 

Hint (r) = 1/ 2 g (r) ('f+ (r) ('f+ (r) o/ (r)) ..Y (r)), 

n is the thermodynamic potential [we introduce here 
for the sake of convenience a variable "interaction 
constant" g(r)]. Taking averages we get 

g 

n.-On=-~ d3r~ ~~g] 1 L\ (r) 12 • (19) 
0 

Equation (8) determines 1/g(r) as a functional of 
.6-(r) [for the sake of simplicity we shall consider the 
real solution for .6-(r) as is usually done in one-di
mensional problems]. Using (8) to integrate (19), 
and using the fact that small additions to all thermo
dynamic potentials in the corresponding variables 
are equal, we get Eq. (18). 

The constant K of (17) is connected with the 
magnitude of the critical field Hem of a bulk speci
men and the penetration depth o0 by the relation 
(which contains the charge e*): 

V2e• 2 
X = ----:-;tC HcmOo· (20) 

For metals of the London type or such intermediate 
metals as tin the region of applicability of Eqs. (16) 
is fairly large and in that case we should consist
ently use the experimental data* for Hem and o~ to 
compare the theory with experiments. For Pippard 
metals o 0 is the penetration depth only in a very 
narrow range of temperatures near Tc· It is thus 
convenient in this case to turn to the theoretical 
formulae for a definition of K. It can easily be 
verified that (17) can be written in the form 

(21) 

where o"J: = (47!" Ne2;'mc2 ) 112 is the London penetra
tion depth and ~ 0 = 0.18 liv/kTc is the non-localiza
tion parameter introduced in Bardeen, Cooper, and 
Schrieffer's paper. Using the data given in reference 
5 we get from (21) for tin K ::::: 0.14, and for aluminum 
K ::::: 0.01. 

We note an interesting consequence of (21). The 

*A detailed study of experimental data is given in a paper 
by Ginzburg.' 
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condition that a superconductor be a London one re
quires K ~ oL/~ 0 » 1. At the same time if K » 1/12 
a metal displays in a strong field the same behavior 
as for alloys. A metal which in weak fields at T = 0 
must be assigned to the London class will thus be
have in strong fields near T c as an "alloy." At the 
same time the case of small K corresponds to a 
Pippard metal. 

Let us now stop a moment at the problem of the 
surface energy at the boundary between the normal 
and the superconducting phase. For strongly ex
pressed Pippard superconductors we can, because 
K is small, use the limiting solution1 

Ons (8rr I H~m) = I.89 Oo I x, (22) 

where 

We note that for these metals the applicability of 
Eq. (22) in an appreciable temperature interval 
near T c is just connected with the fact that K is 
small, since, as was shown in reference 1, in that 
case the quantity ans does not depend on the dis
tribution of the field in the transition region. 

For tin the accuracy of this equation is insuf
ficient and one must use the results of numerical 
calculations. Estimating ans from Ginzburg's 
calculations8 we get for K ~ 0.14 

Ons (8rr I H~) = (2-;- 3) .J0-5 I VI-TI Tc. 

According to Sharvin's data9 

Ons (8rr/ H~) = 2,5·10-5 I VI-TI Tc, 

and according to Faber's data10 

These results do, apparently, not contradict the 
theory (See reference 7). 

In conclusion the author expresses his gratitude 
to Academician L. D. Landau for valuable advice 
and to V. L. Ginzburg for discussing the results of 
this paper and for helpful comments. 
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