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Cylindrical waves produced in a conducting medium by a magnetic field are considered. The 
two cases when the field is directed along the z axis and along the angle cp are analyzed. 
Special attention is paid to "sound" waves as well as to those possessing velocities close to 
that of light. 

A study of plane and particularly cylindrical 
magnetohydrodynamic waves is of considerable 
interest both from the physical and from the ana
lytical points of view. 

In the present paper we confine ourselves to the 
case of infinite conductivity and isentropic motion, 
with the condition that the magnetic field is perpen
dicular to the velocity. We shall carry out the 
study first in the general relativistic form with 
strong fields and large energy densities, and shall 
then proceed to examine "classical" relatively 
weak waves. 

1. FUNDAMENTAL EQUATIONS 

The fundamental equations of isentropic cylin
drical waves can be written in the relativistic case 

(1) 

(2) 

Here a is the velocity, w* the total heat content, 
V the specific volume, 82 = 1-a2/c2, N = 1 for 
cylindrical waves, and N = 0 for plane waves. The 
equations can be derived by using the condition 
8Tik/Bxk = 0, where Tik is the total energy
momentum tensor of the field and of the medium.1 

If the magnetic-field vector is perpendicular 
to the plane of motion of the medium, we have 

HV :=: b const. 

If the magnetic-field vector lies in the plane of 
motion (but is, naturally, perpendicular to the 
velocity vector ) , then 

(3) 

HV 
-~-- 0= b 0= cons!. (4) 

Relations (3) and (4) can be combined into one, 

(5) 

where m = 0 when N = 0 and m = 0 or 1 when 

N = 1. From the relation dw* = Vd (p + p') = V dp*, 
where 

(p' is the supplementary field pressure), we ob-
tain 

• v + v 2 I if2V 
W = p p C T 4;: . (7) 

Inserting now the value of H from (5) we get 

(8) 

Now Eq. (1) can be rewritten 

1 ( i3a oa \ 
62 Tt+aar) 

_ w•2 (!!_If]_~ -L ..'!_ i} In 1/) _1_ '2mc2V H• = O. 
or ' c2 i}t ' 4:rrw• 

(9) 

The characteristics of the system of equations (9) 
and (2) can be written 

dr a+ "'• 
dt = 1 ± aw• I c2 • 

(10) 

The following relations hold along the lines 

da + • d I V - • V a d, '2mc"V fl2 dt 
(J2 = - <•> n + tJ> -,.-- t ·- 4rorw' 

= ± w* dIn V =f w· Na dt- 2n4zcV2b2: dt. 
r ;: w · (11) 

where 

<<>'.• = ~ (-V iJ~le_ + f;) ; c w ' ~J;,~ 
(12) 

w* is the magneto-gasdynamic velocity of sound. 
Inasmuch as 

--V !!.E == -~ (p -:- oc0 ) 
dl' c2 · • ' 

where w = (dp/dp )1/2 is the ordinary velocity of 
sound, we get 
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w•2 (p + pc2) w2 I cz -i- HZ I 4n 
C2 = p + pcz + JiZ I 4n (13) 

Let us now calculate the value of w*2/c2 for 
an ideal gas, assuming that for the isentropic 
process p = Av-k, where A is a constant. Here, 
starting with the relation ·- dV /V = c2dp/ (p + pc2 ), 

we obtain 

V- ..L pV 
P -IX ' (k -1) cz' 

where pa and Va are the initial values of p 
and V at p = Pa· It is obvious that 

w•z kAV2-h + ,2mbzl4n 

C2 = aVc2 + kAV2-k 1 (k -1) + r2mb2 I 4n 

For ordinary gas a = 1; for an ultrarelativistic 
or a photon gas, when p = (k -1) pc2, we get 
a= 0. 

Let us proceed now to examine several prob
lems. 

2. STATIONARY FLOWS 

In the case of stationary flows the system (1) 
and (2) admits of the following integrals 

w• ;6 = w0 = const, (14) 

arN m 
176 = A = m = const, (15) 

where wti is the heat contents at rest, A = 1 or 
2rr respectively for N = 0 or 1, and m is the total 
mass flow per second. 

Relations (14) and (15) c:an be rewritten 

(16) 

From (16) we obtain an expression for V 

( 
'·A bz 2m 2 2v2 )-1 

2 ' ,, vl-k + r \ *2 ( 1 ..L m :XC -y-- --y =W --
k- 1 4"V o 1 c2r2m • 

The case when N = 0 (and consequently m = 0) 
is of no interest; in this case V = const. 

Let us consider two interesting types of motion, 
when N = 1 and m = 0 and 1. It is easy to ex
plain first that the motion in these cases can be 
defined only within a certain region. In fact, since 

rzm = (m I c)2 w*2V2 I (w~2- w*2), 

we have at dr2m = 0 

- d In w* I d In V ~~ I ·- w•2; w~2 = a2 ;c2. 

Furthermore 

d • - v d HZ dV w- p-~· 
dIn w• <U*2 

-d1ili.'=~· 

so that 

i.e., the condition of critical flow is obtained. 
If m = 0, we can readily determine V = V cr; 

r = rcr = rmin, and the motion is defined in the 
region rmin ::;: r < oo. When a ,c. 0 and r - oo 

we have V- oo; a= amax < c, with 

If a= 0, then 

and 

~ m ( kA )'" yt2-k)N 
r ~ cw· \k-1 

0 

a_,. amax = c. 

If m = 1, we obtain by eliminating r 2 

r k Avt-k + 2 + b2m2V 
k- f IXC f;m;2 

L 

' 1 3 

1 --1 + {[ kAV1-k !=; + acz] j w~}-'1•] 

= w*2 ( 2 - k kAV1-k ..L rxc2) 
0 \k-1 ' , 

which determines V = Vcr· 
If a ,c. 0, then, as seen from an analysis of 

this equation, we have two values of V = V cr• 
corresponding to two extremal values of r, r = 
rmin and r = rmax· Thus, the motion will be 
defined in the region rmin ::;: r ::;: rmax· When 
r 2: rmax• the stationary mode of flow is no 
longer possible, and the current will pulsate 
there. 

If a = 0 (ultrarelativistic gas), then rmax 
- oo, and thus the stationary flow will be defined 
in the region rcr ~ r < oo. 

3. NONSTATIONARY WAVES 

We shall study strong "sound" waves in an ul
trarelativistic gas, when the pulsation occurs at 
velocities of flow close to the velocity of light so 
that 1-a/c « 1. Now Eqs. (2) and (9) become 

_!_rla(a/c) + a(afc)] = w•z (ainV ainV) 
62 cat ar c2 cat + ar 

2 mH2V _ N + a In V + a In V 
- 4 TCTW' - - T ----cat -ar- • (17) 

Hence, since H2V = b2r 2m /V, we have 

(18) 
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Here 
I- ro' 2 = kAV1-k(2-k)l(k-1)+cxcz 

C2 kAV 1-k I (k- 1) + cxc2 + b2r 2m 14nV ' 

' kAVI-k b2r2m 
W = /i=1 _j_ IXC2 + 4nV • 

The solution of Eq. (18) involves no great diffi
culties in the case of an ultrarelativistic gas, 
a= 0. In the case when N = 0, we have V = 
F ( r - ct), but a more detailed analysis is of no 
interest. 

Let us consider the case when N = 1: 

iJ!nV -l- iJ!nV = 1 [I _j_ (k-1)b2r2m(l- 2 )] 
cot· iJr (2-k)r '4nkAV2-k m • 

V2-k = r (F (r- ct)- (k- I) b2r 2m-l! 4rtkA]; 

with this 

_.!._ [iJ (a I c) , iJ (a I c)] 
62 ciJt 1 iJr 

(19) 

_ N 1 1 [4nkArF(r -ct)-2m(k-1)b2r2m] 
-- r I (2- k) r 4nkArF (r-et)- (k- 1) b2r 2m • 

The solution of this equation is of the form 

1 _ .!!:._ = ,-2 (k-1)1(2-klf (r _ ct) 
c 

X I - 7---T-.--;;...,---;-;-[ 
(k _ 1) b2r2m-1 J -2 I (2-k) 

4 nkAF (r- ct) · 

It is obvious that 

(20) 

a ft(r-cl) r2 I - c = r-2 (k·-1)/(2-k) V2 r2 I (2-k) = f r(r- ct) F· 

It follows from this that when a ~ c we also have 

~; = f1(r-ct), 

which is an analogue of the continuity equation for 
the stationary case, when f1 ( r- ct) = const. In 
this case we deal with a source of variable flow. 

An investigation of relation (19) and (20) shows 
that when m = 0 the motion is defined over the 
entire space 0 < r < oo. 

When m = 1, waves of this type can exist only 
at 0 :s r :s rmax• when 1-a/c -1 and V- 0. 
When r > rmax• motions can exist only when 
a/c « 1. 

We now show that if there is no magnetic field, 
Eqs. (17) assume the form 

J__ [iJ (a I c) + iJ (a I c)] 
62 c iJt iJr 

_!!_ w2Jc2 =~(iJ!nV +iJ!nV). (21) 
- r 1 - ro2 f c2 c2 c iJt iJr 

In the case a = 0 we have w2/c2 = k -1, and 
therefore Eq. (21) can be rewritten 

J_[iJ(afc) + iJ(a/ c)]= k-1 .!!__ 
62 cat iJr 2 - k r ' 

iJlnV 1 iJlnV N 
C7ft ~~ = (2-k)r • 

The solution of these equations is 

1 _ ~ = f (r _ ct) ,-2N (k-1) /(2-kJ, V = 'fl (r _ ct) rN 1 (2-kl. 

Obviously the following relations hold 

~: = f 1 (r-ct), 

The second relation is an analogue of the Bernoulli 
equation. With this 

P = Av-k = ID (r- ct) ,-kN /(2-kl. 

If N = 2 and k = %. 
p = <D (r- ct) r-4 , (22) 

hence 
4 2 F <ll (r- ct) 

rtr p = = r2 ' (23) 

where F is the force acting on the surface 47r-r2• 

This force is inversely proportional to the square 
of the distance r from the center of the body that 
radiates the ultrarelativistic (or photon) gas. 

Let us proceed now to investigate sound waves. 
The principal equations for sound waves, when 
a« c, become 

iJa -w'2 iJ!nV + 2mVH2c2 =O 
iJt iJr · 4 nrw' ' 

iJJnV .. iJa , Na --O - ----at ' ar -;- -,- -- . 

(24) 

(25) 

if m = 0, the problem of investigating sound wave 
is simply solved. Here w* = w 0* = const, and 
the system (24) and (25) can be written 

iJV iJa Na 
v o at = ar + -,-. 

with V = V0 + t:..V. Hence, introducing the veloc
ity J?Otential defined by the relations 

we arrive at the classical wave equation 

(where N = 0 or 1 ) , the solution of which is well 
known. 

If we have m = 1 and when N = 1, the problem 
is much more complicated. Since HV = br, then 
HV- oo when r- 00 • We may have here p ~ pc2 

and H2 = pc2• It is therefore necessary to inte-
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grate the system 

aa , b2c2r '" a In V 
8t ' 21tVw* = w "ar ' 

a In V aa , a 
-a~=ar-'--r· 

In considering sound waves, we should put 

V = V0 (r) + ~V, H = H0 (r) +~H. 

Since H0V0 = HV = br, then 

~H=-~V~o = -~V b:-, 
0 vo 

With this, the system of equations beomes 

a~ r atlV ar v;;-a~-, 

where~= ar. 

It is obvious that, by introducing 

(26) 

(27) 

b2c• ~ r dr b2 ~ V0 dr2 

'Yj = ~ v- -2- ~ = ~ v -- -4 . V2 k + b•r2 /47t ' 
'"' wowo 7t Ak o 

we arrive at a simpler system of equations 

a~ r a"'J a~. - . r '2 a"'J 
Tr =VaT!' (j{- v;;-wo Tr · 

Hence, eliminating YJ, we obtain the equation 

a•~ , din(V0 /r) a1; 
(fi2 ' dr a,-:-

(28) 

the solution of which is also possible in eXplicit 
form for the set of relations V 0 = V0 ( r ) . 

Relation (28) can be meaningful only under the 

condition that both terms in the right half are of 
the same order of smallness. This can occur 
either if b is small, i.e., the field is weak, or 
if we assume that 

atlV b2 V0 r 
---af ~ 27t k A v~-k + b2r2 /4r. ' 

i.e., by assuming that the derivatives of the func
tions ~ V and ~ can be arbitrary when b is 
arbitrary, a fact that leads to high frequency 
waves of low amplitude. 

Depending on the law V0 = V0(r ), the velocity 
of sound w(j may increase with the distance, de
crease with it, or remain constant as a particular 
case. 

Assuming a .,c. 0 and specifying V0 = {3rv at 
k > 1, we find that if v < 2, we get w(j- c as 

If v > 2, then w(j- 0 as r- oo; when r = 0 
we get in both cases w(j = v'k=1 c. If a= 0, we 
have w(j = const when v = 2/(2 -k). 

When v < 2/(2 -k) and r-oo we get wti 
- c; when r = 0 we get w(j = v'k=1 c. 

When v > 2/(2 -k) and r-oo, we have w(j 
= .fk - 1 c; when r = 0 we get wti - c. 

We can, in particular, assume the field to be 
constant everywhere; then V0 ~ r, i.e., v = 1. 

1 Baum, Kaplan, and Stanyukovich, BseAeHHe B 

KOCMHl!ecKyiO ra30AHHaMHKy (Introduction to Cosmic 
Gas Dynamics), Part 3, Ch. 2, Fizmatizdat, 1958. 

Translated by J. G. Adashko 
362 


