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The properties of the one-meson approximation to elastic nucleon-nucleon scattering are 
considered in detail, and the scattering phase shifts are calculated. A new method of 
phase-shift analysis is proposed, which should lessen the ambiguity of the solution and 
make it possible to get more accurate values of the experimental phase shifts. 

OKUN' and Pomeranchuk1 have shown that, since Here the notations are: g is the the renormal-
peripheral interactions of a particle involve effec- ized meson-nucleon interaction constant (g2 ~ 15 ), 
tively the minimum possible number of 1r mesons, m the mass of the nucleon, J.L the mass of the 1r 

processes involving large orbital angular momenta meson, -r1 and a1 the Pauli matrices in the iso
can be calculated on the basis of the present meson topic and spin spaces, respectively, of the first 
theory. nucleon, T2 and a2 the analogous matrices for 

Let us examine nucleon-nucleon scattering in the second nucleon, and e the scattering angle. 
greater detail. For the part of the amplitude that Strictly speaking, the amplitude (1), is only the 
corresponds to sufficiently large orbital angular main part of the exact one-meson amplitude, since 
momenta l there are contributions only from dia- the only one of the effects caused by the use of the 
grams in which a single 1r meson is exchanged.* exact vertex part and the exact Green's function 
In the one-meson approximation with the symmet- that has been taken into account is the renormali-
ric pseudo scalar meson -nucleon interaction the zation of the interaction constant. Besides this 
nucleon-nucleon scattering is described in the the exact one-meson amplitude contains a contri-
center-of-mass system by the amplitude (n = c = 1) bution of the same type as is given by many-meson 

__ __t__ {d', 2' I ('I"J'Tz) (O'tQ) (O'zQ) Jl, 2) 
- 4ml q" + 1"2 

_ (2', 1' J('l't'rz) (O'tP) (O'zp) 11,2)} 
p2 + p.2 ' 

q = k- k', q = 2k sin 012, p = k + k', 

p = 2k cos 0 I 2, 1 = V m2 + k2 I m , (1) 

The absolute square of this amplitude gives the 
differential cross-section for the transition be-
tween states prescribed by the momentum of one 
of the nucleons, the components of the ~pins of 
both nucleons along the initial momentum, and 
the isotopic spin components of both nucleons. 

*A calculation of the contribution from diagrams with two 
mesons exchanged, made by Galanin, Grashin, Ioffe, and 
Pomeranchuk, provides an estimate of the accuracy of the one
meson approximation for various values of l. It turns out that 
for nonrelativistic energies (up to 100- 300 Mev) the one-meson 
approximation makes the main contribution even for the rela
tively small values l = 3, 4. The results of an analysis of the 
experimental data2 for 90 and 150 1VIev agree with these esti
mates. 

diagrams, which need not be used (this is proved 
in reference 1 ) . In nonrelativistic approximation 
the amplitude (1) corresponds to the well known 
one-meson interaction of nucleons, which is ob
tained in the lowest order of perturbation theory 
(cf. e.g., references 3* and 4). The part of the 
exact one-meson amplitude that has been omitted 
corresponds to an interaction that vanishes at in
finity like exp ( - 3J.Lr). 

To make the change to the representation of 
the total spin and total isotopic spin ( k, S, Sz, 
T, T 3 ) we must reconstruct the scattering oper
ator M, for which the amplitude (1) is the matrix 
element in the representation k, s 1, s 2, r 1 , r 2• 

It is not hard to verify that the scattering operator 
has the form 

' gz {< 't 't ) q2 -1- 3- ('t'J'tz) pz } (o m)(o m) (2) 
T 4ml 1 2 qz + 1"2 , 4 · · p2 + 1"2 1 2 , 

where n = [k x k' ]/k2, 1 = p/p, m = q/q. We note 

*We take occasion to point out that Eqs. ( 47.10) and (47.13) 
of reference 3 contain a superfluous factor 3 in the central part 
of the potential. 
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the following fact. In the amplitude (1) the second 
(exchange ) term exists only for identical particles. 
For different particles, keeping the former inter
action of the two particles with the meson, we 
should have simply 

Comparison with Eq. (2) shows that inclusion of 
the symmetry changes the interaction. This is in
deed not surprising, since inclusion of the sym
metry in fact means the introduction of a new 
(exchange) interaction, to describe which addi
tional terms in the scattering operator are re
quired. 

(rt., ~ = 1' 0,- 1' 0); 

The scattering operator is diagonal in the total 
spin and the total isotopic spin, and therefore we 
shall denote its matrix elements by the symbol 
M ( S, (3, a, T), where a and (3 are the initial 
and final components of the total spin along the 
initial momentum. Calculation gives the follow
ing scattering amplitudes: 

M (1, ;3, o:, 1) = MB" (6, cp)- MB" (1t- 6, <p + 1t)} 

M(0,0,0,1)=M(6)+M(1t-6) T= 1, 

M (1, ;3, o:,O) = -3[MB" (6, cp) + MB" (1t-6, 'P + 1t)]l 

M (0, 0, 0, 0) =- 3 [M (())- M (n- 6)] j T = O, 
(3a) 

where the matrices M(3 a ( 8, cp ) and M ( 8 ) , com
bined into a single four-row matrix, have the form 

M (O) =" _!__ G cos 6 -1 
p. x- cos6' 

1 (I-' )2 
X= 1 +-y k ; 

c -'"'l j2 
-.sin 6e-i9 I Y2 (1 +cos 6) e-2icr 12 

n LBrz (0, cp) = -sin 6i"' I Y2 cos 6 sin 6e-i"' 1 V2 

(1 + cos 6) e2' 9 I 2 ~in 6ei'P I Y2 (1- cos 6) /2 
-11 0 

Here cp is the azimuthal :mgle of the scattering, 
and the fourth value of a and (3 corresponds to 
the stnglet. 

Since for our purpose it is important to sepa
rate the large orbital angular momenta l, which 
are well described by the one-meson amplitude, 
from the small angular momenta, for which many
meson diagrams must be included, we shall go 
over to the representation J, mJ, l, S, T, T3 

( J and mJ are the total angular momentum and 
its component along the initial momentum ) . In 
the representation of the total angular momentum 
the scattering is described by a matrix sf,T1 , di
agonal in J, mJ, s, T, T3 and independent of 
mJ and T3 (cf., e.g., reference 5). The index 
for the total spin is omitted, since the single.t is 
distinguished from the triplet by the use of the 
notation sf. The scattering amplitude in the rep
resentation k, S, Sz, T, T3 is connected with 
the matrix sf,~z by the following general relation:* 

M (S, ~. rt., T) = i~ ~ § ~ V 4n' (2l + 1) i 1_ 1, Y~~-Bl (6, cp) 
1' J 1 

X (l, S, 0, ri [l, S, J, oc) 

X (l', S, oc- ~. ~ [l', S, J, oc) (Sf.: 1 - o1,, 1), (4) 

where (l, S, mz, ms IZ, S, J, mJ) are Clebsch
Gordan coefficients in the notation of Condon and 

*We call attention to the fact that the right member of Eq. 
(4) is doubled as compared with the analogous expression for 
nonidentical particles. The right side of Eq. (5) is also doubled. 

0 0 (3b) 

Shortley. 6 This relation enables us to express the 
scattering matrix and the scattering phase shifts 
in terms of the coefficients of the expansion of the 
amplitudes M (S, (3, a, T) in associated Legendre 
polynomials: 

M (S, ~. rt., T) = ! i<"-~l'~' ~ (2l +I) P i"-~l 
t= I (l- ~I 

X (cos 6) a1 (S, ~. oc, T). (5) 

Let us introduce the following notations for the non
vanishing elements of the scattering matrix: 

si:~ - 1 = 2i"fdr 
SJ r SJ r 2. r for the triplet, 

J-1, J+I = J+I. J-1 = l~J 

s[- 1 = 2i7J[ for the singlet. 

For T = 1 only the matrix elements with odd l 
in the triplet and even l in the singlet are differ
ent from zero, and the reverse is the case for 
T = 0; therefore the index for the total isotopic 
spin can be omitted (in the triplet coefficients of 
the expansion of the amplitudes we shall also omit 
the index for the total spin, and in the singlet co
efficients, all spin indices). In the case in which 
I YJY I, I ~J I, I YJzl « 1, i.e., for large orbital an
gular momenta, the real parts of these quantities 
are respectively the same as the matrix phases 
61, J• €J, 6z (bar phase shifts) introduced by 
Stapp arid others. 7 If we parametrize the scatter
ing matrix by means of the proper phase shifts 5 

of., EJ, o1, then for large orbital angular mo
menta 
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Re'Yit = ot=3t, Re'Y/~ = o~=aJ,J' 

Re TI.T ~ cos2 ~ • i)J -t- Si.n2 e • •J 
'lf±1 ~ cJ .f±1 ~J 0J'f'1' 

Ree, = f-sin2s; (oL1 -o~+1). 

We note that the mixing parameters EJ are usl.l
ally large, so that the quantities 1)~±1 can be de

cidedly different from the corresponding proper 
phase shifts o~±1 • 

Solving Eqs. (4) and (5) for 1) and ~, we get 
for the quantities different from zero 

(2!- 1) 'Yi~-1 = (l- 1) at ( 1, 1) + V2 (l-+ 1) at ( 1, 0) 

+ (l- 1) (l +I) (l + 2)at(-l, 1) + lat(O, 0) 

+(l-1) (l + l)[at(l, 0) + at(O, 1)] Y2, 

'Yii =at(!, 1)- V2 a1 (I, 0)- (l- I) (l + 2) at (- 1, 1) 

+ [at(l,O)+ai(O, l)JV2, 

(2l + 3)'Yif+1 = (l + 2)at(l. 1) 

+ VZlat ( 1, 0) + ( l- 1) l ( l + 2) az (- 1, 1) 

+(l+ l)a1(0, O)-l(l+2)[at(l,O)+az(O, l)lV~ 

VJ<J+1> v-~J= 2J+ 1 {-a1_ 1(1,1)-2 2(J-l)a1_ 1(1,0) 

-(J -2)(J -l)a;_1 (-1, I)+ a;_1 (0, 0) 

+ (J- 1) [a;_1 (1, 0) + a1 _ 1 (0, l)JVZ} 

VJ(J+1> v- 2 = 2J+i {-aJ+1 (1,1)+2 2(J+ )a1+1(1,0) 

- (J + 2) (J + 3) aJ+1 (- 1, 1) + aJ+1 (0, 0) 

-(J +2)[a;+1 (1,0) +a,+r(O, l)JV2), 

(6) 

We emphasize that the relations (6) are of a gen
eral character, i.e., are valid in any approxima
tion as to the number of mesons, since no specific 
properties of the scattering amplitude were used 
in deriving them. In the one-meson approximation 
az( 1, 0) + az( 0, 1) = 0, which is equivalent to the 
equation e-i<PM(l, 0, 1, T) =ei<PM(1, 1, 0, T); 
this leads to some simplification in the equations 
(6) (the last terms vanish), and also to a linear 
relation between the triplet elements with the same 
l but different J: 

(l + 1) (2!- 1) 'Y/;-1 

+ (2! + 1) 'Yii- l (2l + 3) 'Yii+1 = 0. (7) 

Substituting in Eq. (6) the expansion coefficients 
of the amplitudes (3) 

az (1, 1) =-} G : { (2- x)o/ 0 - {o11 + (x- 1)2 Qt}Ez, 

Gk/ p. { 2 } a1(1, 0) = V -3 o, 1 + l (x-i) [xQ,- Qt-1l E,, 
2! (l + 1) 

~ Gkfp. 2 
a1 (-1, 1) ~ 2 (l- 1)(l + i) (l + 2) {[(l- i)(x - 1)- 2] 

X Q1+ 2xQz-1} E,, 

az(O,O)=G: {<x-l)ozo+! ol 1-x(x-1)QI}Ez, 

(8) 

where the projection function 

E 1=Ez(S, T) = -f+ 2T + (1-25)(3/ 2 -T)(-1)1 

takes the values 1, 0, -3, depending on the spin 
and parity, we get 

1_ 1 ~ Gk I v- {Q Q E 'Y/z ~ 2l-1 1-1- z} z, 

Gkjp. 
'Yil =- 1 + 1 {[l (x- 1)-1] Q1 +QI-1} Ez, for L"> 2; 

t+1 ~ Gk I v- {Q - Q } E . 
'Yit ~ 2l + 3 t l+l l' 

E, = ~J ~~ YJ ~ 1 {[I- (2J -l- 1) (x--I)] Q1 - Q1_ 1} £ 1_1> 

k 
'Yit = G f1"' {(x- I) Q;- o, 0 } Et. (9) 

For the 3s and 3P states we have 

k 
'Y/~ = G f1"' [I - (x- 1) Qol. 

1 k 
'Yj~=-2Gf1"'[1-(x-1)(Q0 -Q1)], forT=1; 

k 
'Yii = 0.1 Gp: [I- (x- 1) (Q0 + 3Q1)l; 

k 
'Y/1 = - G - [ 1 - (x- 1) Q0] for T = 0. 

0 !'-
(10) 

In Eqs. (8)- (10) the following notations have been 
used: ozo and ozt are Kronecker symbols, and 
Qz = Qz ( x) is the Legendre function of the second 
kind. For small energies (k/J,L « 1, which corre
sponds to laboratory energies E « 40 Mev) 

In determining the accuracy of the one-meson 
approximation for the various quantities we must 
take into account the following properties of these 
quantities. The off-diagonal element ~J can be 
expressed in terms of the ( J + 1)st coefficients 
of the expansion of the amplitudes [cf. Eq. (6)] . 
These same coefficients occur in the expressions 
for the diagonal elements corresponding to the 
orbital angular momentum l = J + 1, and thus, 
generally speaking, the errors incurred in all 
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TABLE I. Values of 1Jl, 1Jf, ~J for T = 1 (the usual spectro
scopic notations are used for the diagonal elements 1Jz, 1Ji) 

E, Mev 10 17 40 

X 3 2.165 1.5 

I 
1So -4.8 -8.6 -19 
1D2 0.17 0.38 0.99 
lG• 0.004 0.018 0.11 
3Po 4.8 8.6 19 
apl -3.0 -5.3 -11 
3p2 0.11 0.28 0.89 
~. -0.23 --0,53 --1.5 

sp• 0.015 0.052 0.27 
3Fs -0.037 -0.13 -0.58 
sp• 0.001 0,006 0.048 
~. -0.004 -0.021 -0,14 

sH• 2 ·10-4 0.001 0,016 
3H5 -8-10-5 -0.005 -0.056 
3Hs 2 ·10-5 2 ·10-• 0.004 

these quantities ( ~J• 1)j~i. aJ+ 1) owing to the 
use of the one-meson approximation are of the 
same order of magnitude. For small energies 
I ~ J I » I1J j-: i I ; evidently a similar relation will 
also hold in this range of energies for the corre
sponding corrections to the one-meson approxi
mation. Furthermore, for a very wide range of 

· · th · t· I 1+11 energies m e one-meson approx1ma wn 1JZ 

« I1J~-t I, I1J~ I (we note that for small energies 

1J l-1 1Jl ~ k2l+1 and 1Jl+1 ~ k2l+ 3 ) and therefore 
l ' l ' l ' 

the fractional accuracy of the quantity 1)~+ 1 must 

I 

be much lower than those of 1)~- 1 and 1J~ . For 
small energies (k/t-t ~ 1) the one-meson approx
imation can be quite useless for the determination 
of 1)~+ 1 . This must be particularly noticeable for 
small l ( 3P2, 3D3 ). On going over to the proper 

phases we get 6~+ 1 and EJ in the one-meson 
approximation with the errors characteristic of 
the ( J- 1 )st coefficients, since these phases de
pend on 1J~ _1 . In order not to introduce these 
artificial errors into the calculation it is better 
to use the Stapp parametrization or to use the co
efficients (8) directly. 

These remarks show that the accuracy of cal
culations in the one-meson approximation of the 
various measurable quantities corresponding to 
a given orbital angular momentum l is deter
mined by the accuracy of the elements 1)~- 1 , 1J~, 
~ z_ 1, 1Jl, except in those special cases in which 
through cancellations a measurable quantity will 
actually depend only on 1)~+ 1 • In principle other 
types of cancellations are possible, for example 
if the triplet elements occur only in the form of 
the linear combination (7), which vanishes in the 
one-meson approximation. In these cases there 
is a corresponding decrease in the accuracy of 
the calculations. Besides this, in the one-meson 

100 200 300 400 670 
---

1.~ 1.1 1.0675 1.05 1.03 
I 

I 

1-70 --37 1-57 -82 -100 
1.9 I 2.4 I ') " 2.6 2.5 -.J 

I 
0.41 0. 75 0.94 1.1 1.2 

37 I 57 70 82 100 
-21 -37 -43 -54 

2.4 4.3 1-31 5.7 6.9 9.2 
-3.5 -5.4 -6.7 -7.7 -9.5 

1.0 2.1 3.0 3.8 5.3 
-1.9 -3.6 -4.9 -5.9 -7.9 

0,25 0,62 0.94 1.2 1,9 
--0.59 -1.2 -1.7 -2~1 -2.7 

0.12 0,35 0.57 0.78 1.3 
-0.35 -0.88 -1.4 -1.8 -2.6 

0.039 0.14 0.23 0.35 0.60 

approximation all the quantities are real, and 
therefore they cannot be used in cases in which 
the imaginary part of the scattering amplitude 
cannot be neglected. 

Table I shows the values in degrees of 1J and 
~ for T = 1, as calculated from Eqs. (9), (10) 
with G = 0.55/y for a number of energies E 
(in the laboratory system ) , and Table II shows 
the values of 1J and ~ for T = 0. The tables 
begin with l = 0, although it is obvious that for 
small values of l the one-meson approximation 
can be quite useless. 

An estimate of the accuracy of the one-meson 
approximation found by calculation of the two
meson phase shifts shows that with good accuracy 
(of the order of 20 percent) one can use the one
meson F and G phase shifts for E ~ 200 Mev; 
their accuracy improves with decrease of the en
ergy. For a fixed energy the accuracy of the vari
ous phase shifts increases exponentially with in
crease of l. The D phase shifts are given with 
good accuracy by the one-meson approximation 
for E ~ 50 Mev. To determine the goodness of 
the one-meson S and P phase shifts one would 
have to study many-meson diagrams,* and this 
has not been done so far. There is evidently no 
region of applicability of the one-meson S phase 
shifts, since for small energies these phases are 
61 = 6~ ~ k3 and cannot provide the main contri
bution. An analogous situation exists for the 3P2 
phase shifts. 

For a comparison of the one-meson phase 
shifts with the experimental values one needs a 
rather precise phase -shift analysis of the experi-

*We emphasize that it is necessary to study the exact many
meson diagrams; calculations in low orders of perturbation 
theory (cf., e.g., reference 4) cannot serve as a reliable basis 
for estimating the corrections to the one-meson phase shifts. 
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TABLE II. Values of 17z, 1Jy, ~J for T = 0 

E, Mev 10 1i 40 

X 3 2.165 1.5 

lpl -3.8 -5.9 -9.7 
lp3 -o:o8 -0,24 -0.98 
lHs -0.002 -0.012 -0.12 
3Sl -4,8 -8.6 -19 
~1 6.0 10 20 

3D1 -0,54 -1.4 -4,5 
3D• 0.88 2.1 6.5 
3Ds -0.032 -0.11 -0.57 
~3 -0.093 0,31 t ,3 

3Gs -0,005 -0.024 -0.18 
sa. 0,016 0.075 0.53 
3Gs -4·10-4 -0.003 -0.039 

mental data, including phase shifts for high angu
lar momenta. The usual procedure in phase-shift 
analysis is as follows: all the measured quantities 
are written as functions of the phase shifts with 
l ::s Zmax• and all the phase shifts for l > Zmax 
are assumed to be zero. The nonvanishing phase 
shifts are then varied to get the best agreement 
with the experimental data. The main shortcom
ing of such a procedure as applied to the existing 
data is the ambiguity of the solution, caused by 
the large number of variable parameters and the 
incompleteness of the set of measurements. Thus 
in the analysis of the data on p-p scattering at 
310 Mev with Zmax = 5 ( 14 parameters )7 eight 
acceptable solutions are obtained, more precisely 
eight more or less broad many-dimensional re
gions (of ellipsoidal type) centered on the solu
tions. In analyzing the data for 150 Mev Ohnuma 
and Feldman8 obtained 11 such regions, some of 
them connecting continuously with each other. The 
analysis for 40 Mev9 leaves so much arbitrariness 
in the allowed solutions that it is practically im
possible to get any sort of quantitative estimate 
of the phase shifts. 

Besides this difficulty, which in principle can 
be removed by an increase of the amount of ex
perimental data, there remains the problem of 
the stab~lity of the solutions with respect to the 
inclusion of the phases that have been dropped 
(with l > Zmax). It is obvious that the least stable 
values (we are speaking in terms of fractional 
stability) will be the last of the included phase 
shifts with l ~ l max• which are those of interest 
to us here. Therefore, for example, for a com
parison of the phase shifts with l = 4 we need an 
analysis with at least Zmax = 5, and to test the 
stability of these phase shifts it is desirable to 
continue the analysis to Zmax = 6. It is obvious 
that the analysis then becomes cumbersome and 
practically not feasible. 

It seems reasonable to us to propose a differ-

100 200 300 400 670 

1.2 1.1 1.0675 1.05 1.03 

-13 -14 -13 -13 I -12 
-2.6 -3.9 -4.6 -4.9 -5,1 
-0.60 -1.3 -1.8 -2.1 -2.6 

-37 -57 -70 -82 -100 
35 50 59 67 81 

-12 -22 -29 -34 -46 
16 26 33 40 51 

-2.1 -4.5 -6.4 -8.0 -11 
4.1 7.3 9.4 11 14 

-0.96 -2.4 -3.6 -4.8 -7,3 
2.3 5.2 7.3 9.3 13 

-0.28 -0.85 -1.4 -1.9 -3.1 

ent method of phase-shift analysis, which would 
take into account our knowledge of the phases with 
large Z: to use the phase shifts for l ::s Z1 as un
known parameters and take for all the others (with 
l > z1) the values in the one-meson approximation. 
The simplest way to do this is to write the meas
ured quantities as functions of the "corrected" 
amplitudes 

M' (S, ~. a, T) = M (S, ~. a, T) 

I, 

~ (2l + 1) P)"-~l (cos 6) a1 (S, ~. a, T) 
t~I<X-~1 

[ 1 11+111+2 

+ i~ ~ ~ ~ V 4rr (2/ + !) il-ty);<-~) (6, rp) 
l'=oJ~o l=o 

>< (I, S, 0, all, S, J, a) (I', S, a-~. ~ ll', S, J, a) 

(11) 

where M (S, {3, a, T) and az (S, {3, a, T) are 
respectively the amplitudes (3) and their expansion 
coefficients (8), and the rest of the right member 
is the usual expression for the matrix elements* 
in terms of a finite number of phase shifts ( l max 
= 11 ). The off-diagonal elements of the scattering 
matrix, corresponding to J 2:: Z1, which will be 
involved in this part, must be included in the one
meson approximation. For example one can begin 
the analysis for 310 Mev with z1·= 2, in view of 
the satisfactory accuracy of the F phase shifts. 
There are then in all 5 variable parameters (in
stead of the 14 parameters of reference 7); the 
analysis is much easier and, what is more impor
tant, the number of solutions must be smaller. To 
test the stability of the solutions with respect to 
errors in the phase shifts with l > Z1, which have 
been included in the one-meson approximation, 

*Expressions for the various measurable quantities in terms 
of the amplitudes M ', and the parts of the amplitudes ( 11) re
quired for the "correction," with effects of the Coulomb inter
action included, can be found in reference 7. 

IY 
!'' 



1228 A. F. GRASHIN 

and to improve the solution, one must repeat the 
analysis with Z1 = 3 ( 9 parameters) and examine 
the displacement of the solutions found previously. 
If new solutions (isolated from the former ones ) 
appear, they must be rejected. It may turn out 
that the value Z1 = 2 is too low for the case in 
question, and that the solution found in the first 
step is not accurate enough. Nevertheless suc
cessive stages of the analysis with Z1 = 3 and 
Z1 = 4 must give better results than those obtained 
by Stapp and others7 by the usual method. Further
more the analysis is less c:umbersome and is a 
natural physical scheme for breaking up the anal
ysis into several stages and thus reducing the vol
ume of the calculations. Even from the experi
mental data available at present the proposed 
procedure of phase-shift analysis should give 
more definite and accurate information about the 
phase shifts.* 

In conclusion I express my gratitude to L. B. 

*From the example of the phase-shift analysis for E < 40 
Mev with lmax = 2 carried out by MacGregorlO we can see how 
an inspection of the one-meson approximation to the higher 
phase shifts (in this case 3P 0 , 3P 1 , '02) can reduce the number 
of solutions. On the other hand, the analysis9 for 40 Mev shows 
what a large effect can come from the neglect of the phase 
shifts with l > lmax and what difficulties arise from the inclu
sion of additional phase shifts as arbitrary parameters. 

Okun', I. Ya. Pomeranchuk, and Ya. A. Smorodin
skil for a discussion and helpful comments. 
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