of measurement would be needed for the performance of the experiment.

We are grateful to V. B. Berestetskill for discussions.

[^0]Translated by J. G. Adashko 262

CORRECTION TO THE PAPER BY V. Ya. EĬDMAN "RADIATION OF AN ELECTRON MOVING IN A MAGNETO-ACTIVE PLASMA"

Submitted to JETP editor January 10, 1959
J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1335-1336 (April, 1959)
I
N a paper of the author by this title J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 131, 1958, Soviet Phys. JETP 7, 91 (1958) the normalization of the polarization vector $a_{j \lambda}$ has not been carried out
completely. These vectors should be written in the form:

$$
\mathbf{a}_{j \lambda}=\zeta_{j}\left\{1 / \sqrt{2} ; i \alpha_{j} / \sqrt{2} ; i \beta_{j} / \sqrt{2}\right\}
$$

where

$$
\begin{gathered}
\zeta_{j}^{2}=2 n_{j \lambda}^{2} /\left[\left(1-\frac{V}{1-u}\right)\left(1+\alpha_{j}^{2}\right)+(1-V) \beta_{j}^{2}-\frac{2 V \sqrt{u}}{1-u} \alpha_{j}\right], \\
\alpha_{j}=K_{j} \cos \theta+\gamma_{j} \sin \theta ; \quad \beta_{j}=-K_{j} \sin \theta+\gamma_{j} \cos \theta ; \\
K_{i}=\frac{2 \sqrt{u}(1-V) \cos \theta}{u \sin ^{2} \theta \mp \sqrt{ } u^{2} \sin ^{4} \theta+4 u(1-V)^{2} \cos ^{2} \theta}, \\
\gamma_{j}=\frac{V \sqrt{u} \sin \theta+K_{j} u V \cos \theta \sin \theta}{1-u-V\left(1-u \cos ^{2} \theta\right)} .
\end{gathered}
$$

Taking account of the above correction leads to the appearance of the factor ζ_{j} in Eq. (7) and the factor $\left|\zeta_{\mathrm{j}}\right|^{2}$ in Eqs. (10), (12) - (17), (24), (25) and the formula following Eq. (22). Hence the last equation in the paper should contain the factor $\left|\zeta_{1}\right|^{2} /\left|\zeta_{2}\right|^{2}$. Furthermore, in addition to the expression for $W_{1 j}$ [Eq. (24)], we must introduce the expression

$$
\begin{gathered}
W_{-1 j}=\frac{T e^{2} \omega_{-1}^{2} d \Omega\left[v_{1}\left(-1+\alpha_{j}\right)-\beta_{j} \omega_{-1} n_{j \lambda} r_{0} \beta_{2} \sin \theta\right]^{2}\left|\zeta_{j}\right|^{2}}{16 \pi c^{3}\left|1-\beta_{2} \cos \theta\left(n_{j \lambda}+\omega_{-1} n_{j \lambda} \lambda \omega \omega\right)\right|}, \\
\omega_{-1}=\frac{\Omega_{0}}{\left|1-\beta_{2} n_{j \lambda} \cos \theta\right|} .
\end{gathered}
$$

Translated by H. Lashinsky 263

[^0]: ${ }^{1}$ S. Z. Belen'kiľ, Лавинные процессы в космических лучах, (Cascade Processes in Cosmic Rays), M-L, 1948.

