- a4

Thus for sufficiently large $\tau \omega_{max}$ the wave front of an electromagnetic shock wave consists of a circularly polarized oscillation with a variable frequency.

*The case of a nonlinear relation between the electric displacement D and field E can be treated similarly, as well as the case of nonlinearity with respect to both the electric and the magnetic fields.

[†]This circumstance (for electromagnetic waves) was first pointed out and utilized by I. G. Kataev.

[‡]The anisotropy field will not be considered. In the following it will be assumed that $H_{z0} = H_0 - 4\pi M > 0$ since only this leads to stability in the initial conditions in the medium.

**In a stationary wave the field components (which, in general, are not transverse) have the form f(z-vt) where the velocity v = const.

***We note that the value for the velocity of the shock wave determined from (2) and (4) coincides with that from (7).

¹ L. Landau and E. M. Lifshitz, Механика сплошных сред (<u>Mechanics of Continuous Media</u>) Moscow, Gostekhizdat, 1954.

² R. Courant and K. O. Friedrichs, <u>Supersonic</u> <u>Flow and Shock Waves</u>, Interscience, New York, 1948, (Russ. transl. IIL, Moscow, 1950).

³ L. Landau and E. Lifshitz, Phys. Z. d. Sowjetunion 8, 153 (1935).

⁴A. V. Gaponov and G. J. Freidman, Изв. ВУЗ, Радиофизика (News of the Universities, Radiophysics), in press.

Translated by M. Danos 188

ON THE HEAT CONDUCTIVITY AND ATTENUATION OF SOUND IN SUPER-CONDUCTORS

B. T. GEĬLIKMAN and V. Z. KRESIN

Moscow State Pedagogical Institute

Submitted to JETP editor December 18, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 959-960 (March, 1959)

We have previously calculated the electronic heat conductivity¹ κ_{e} , of superconductors and the phonon conductivity,² κ_{p} , determined by the scattering of phonons by electrons. It will be shown here that from the theoretical temperature dependence of κ_{e} and κ_{p} found, we can explain, to a considerable extent, all the relationships in the existing experimental data on the heat conductivity of superconductors. According to our earlier paper² κ_p can be expressed as:*

$$\chi_{p}^{s} = \chi_{p}^{n} F(T) / F(T_{k}),$$

$$F(T) = -8 (b^{4} + b^{3}) (e^{b} - 1)^{-1}$$

$$+ 6\zeta(3) (e^{b} + 1) - 3 (e^{b} + 1) \sum_{s} s^{-3} \exp(-2bs)$$

$$\times (4b^{2}s^{2} + 4bs + 2) + 6\zeta(4) (e^{b} - 1)$$

$$- (e^{b} - 1) \sum_{s} s^{-4} \exp(-2bs) (8b^{3}s^{3} + 12b^{2}s^{2} + 12bs + 6) + 32b^{3} (e^{2b} - 1)^{-1}$$

$$\sum_{s} \{s \exp(-2bs) \operatorname{Ei} [-s (2b - a)]\} + 6 \sum_{s} s^{-3} \exp(-2bs),$$

$$a = 2b - 0, 16, \ \zeta(s) = \sum_{n=1}^{\infty} n^{-s}.$$
(1)

In the normal state $\kappa_p^n = \text{const} \cdot T^2$; $b = \Delta(T)/kT$, where $\Delta(T)$ is the energy gap, and κ_s/κ_n depends only on T and T/T_k . For comparison with experiment one must use a specimen with sufficient impurity concentration for κ_e to be small. In Fig. 1 the theoretical curve is drawn according to Eq. (1) and the experimental points are for an In-T1 alloy measured by Sladek.³

If $(T_k - T)/T_k$ is not very small, κ_e is not appreciably affected by the electron-phonon interaction.

FIG. 1. Points – experimental data³ for T1 concentration 38%. Solid curve – theoretical

As can be seen from Fig. 1, the conductivity κ_p increases exponentially as $T \rightarrow 0$, owing to the increase in phonon mean free path with decreasing scattering by electrons. At sufficiently low temperatures the lattice thermal resistance due to electron scattering, $1/\kappa_{pe}$, becomes less than the resistance due to scattering by lattice defects and crystal boundaries, $1/\kappa_{pd}$ (κ_{pd} is the same as κ_{pd} in a normal metal). Since the resulting lattice conductivity is $\kappa_p = \kappa_{pe}\kappa_{pd}/(\kappa_{pe} + \kappa_{pd})$, we get $\kappa_p \approx \kappa_{pd}$ at still lower temperatures. κ_{pd} usually decreases according to a power law⁴ ($\sim T^3$) at low temperatures. For temperatures such that $\kappa_{pd} \sim \kappa_{pe}$, the lattice conductivity should then have a maximum (see curve 1 of Fig. 2). Such a maximum was found in experiments on Pb + 10% Bi.⁵

The electronic heat conductivity varies in quite a different way, because of the reduction in the number of electronic excitations, as was shown by Geĭlikman.¹ $\kappa_{\rm e}$ first decreases slowly and then exponentially with decreasing temperature (see curve 2 of Fig. 2).

The total heat conductivity κ is the sum of κ_e and κ_p . In pure specimens $\kappa_p \ll \kappa_e$ at almost all temperatures, and $\kappa \approx \kappa_e$. This is confirmed

by measurements on Al and Zn,⁶ Sn,^{7,9} In,⁷ and Pb.⁸

Only at very low temperatures do we have $\kappa_e < \kappa_p$ and $\kappa \approx \kappa_{pd}$. In very impure specimens $\kappa_p \gg \kappa_e$ and $\kappa \simeq \kappa_p$ at all temperatures.^{3,5} For intermediate cases of not very pure superconductors, κ_e is the main component near T_k, so that κ falls with decreasing temperature. At sufficiently low temperatures κ_p becomes larger than κ_e , and κ is then determined by curve 1 of Fig. 2. Such a temperature dependence was found in experiments on Sn, Hg and Pb,⁹⁻¹¹ while de Haas and Rademakers¹¹ and Mendelssohn and Olsen⁵ found a maximum in κ , related to the maximum in κ_p (the collected experimental data are contained in Shoenberg's book¹²).

Let us now examine the coefficient γ of absorption of sound in superconductors, due to electronic excitations, when the frequency is $\omega \gg 1/\tau$, where τ is the relaxation time. The absorption due to phonons is, under these conditions, the same as in a normal metal.

From a consideration of the probabilities of absorption of a sound quantum and of the reverse process, we obtain for the ratio

$$\frac{\Upsilon_s}{\Upsilon_n} = \frac{x - \ln\left[(e^{b+x} + 1)(e^{b} + 1)^{-1}\right] + D(x)(2b - x + 2\ln\left[(e^{x-b} + 1)(e^{b} - 1)^{-1}\right])}{\ln\left[(e^x + 1)/2\right]}$$
$$x = \hbar\omega/kT; \ D(x) = \begin{cases} 1, & x \ge 2b\\ 0, & x < 2b \end{cases}$$

For $x \ll 1$ this gives $\gamma_s / \gamma_n = 2/(e^b + 1)$, which agrees with the expression previously obtained by Bardeen, Cooper, and Schrieffer.¹³

We thank Academician L. D. Landau for valuable advice.

*There is a misprint in the final formula of reference 2.

¹B. T. Gelikman, J. Exptl. Theoret. Phys. (U.S.S.R.) **34**, 1042 (1958), Soviet Phys. JETP **7**, 721 (1958).

²B. T. Geĭlikman and V. Z. Kresin, Dokl. Akad. Nauk SSSR **123**, 259 (1958).

³R. J. Sladek, Phys. Rev. **97**, 902 (1955).

⁴R. Peierls, <u>Quantum Theory of Solids</u>, Russian translation, IIL page 69 (1956). [Clarendon Press, Oxford, 1955].

⁵K. Mendelssohn and J. L. Olsen, Proc. Phys. Soc. **63A**, 2 (1950).

⁶N. V. Zavaritskiĭ, J. Exptl. Theoret. Phys.

(U.S.S.R.) 34, 1116 (1958), Soviet Phys. JETP 7, 773 (1958).

⁷K. Mendelssohn and C. A. Renton, Phil. Mag. 44, 776 (1953).

⁸J. L. Olsen and C. A. Renton, Phil. Mag. 43, 946 (1952).

⁹S. J. Laredo, Proc. Roy. Soc. 229A, 473 (1955).

¹⁰ J. K. Hulm, Proc. Roy. Soc. 204A, 98 (1950).

¹¹W. J. de Haas and A. Rademakers, Physica 7, 992 (1940), Leiden Comm. 261e (1940).

¹²D. Shoenberg, <u>Superconductivity</u>, Russian translation IIL page 80 (1955) [Cambridge, 1952].

¹³ Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957).

Translated by R. Berman 189