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A criterion has been derived for instability of the flame zone of a plane detonation wave; 
this criterion determines the conditions for the occurrence of a spin detonation. Conditions 
have been derived for the occurrence of single-headed spin detonations, and for oscillations 
of the combustion front in a detonation wave. It is shown that the criterion for unstable com
bustion which is derived for detonation waves is also applicable to forced combustion cham
bers. 

The instability of the flame zone plane is considered as a source of high-frequency oscil
lations of the flame. The order of magnitude of the fundamental frequency of these oscilla
tions has been determined, and the conditions for the appearance of higher harmonics have 
been found. The origin of resonance vibrations in a furnace is explained qualitatively, and 
an estimate is made of the maximum pressure during the oscillations. 

1. INSTABILITY OF THE FLAME FRONT PLANE 
IN A DETONATION WAVE 

LET us consider a stationary detonation wave. 
Gas, originally in a state represented by point 0 

v 
FIG. 1 

tion front has been dealt with exhaustively by Ya. 
B. Zel'dovich.1 

in the P-V diagram (Fig. 1), is rapidly com
pressed (by the shock wave) along the dynamic 
adiabatic to the state A. The high density and 
temperature of the gas in state A gives rise to 
chemical combustion reactions in the gas, whose 
final state is the Jouguet point J in the P-V dia
gram - the point where the Hugoniot adiabatic H 
is tangent to the line OA. At the point J, the 
sound velocity a is just equal to the velocity of 
·the detonation front with respect to the compressed 
gas (the Jouguet condition): 

The time required for a chemical reaction de
pends, as a rule, on the temperature and pressure 
according to the relation 

a=D-W1 , 

where D is the velocity of detonation and W J is 
the velocity of the gas in the pressure wave. 

The chemical reactions going on in the detona
tion wave require a certain amount of time. There
fore the plane at which the combustion is completed 
does not coincide geometrically with the density 
discontinuity at A. Figure 2 shows schematically 
the distribution of pressure behind the front in a 
detonation wave. From A to J the pressure de
creases in accordance with the rate at which heat 
is being generated. All the intermediate. states on 
curve AJ in Fig. 2 are represented by points on 
the straight line AJ in Fig. 1; this follows from 
the requirement that all parts of the burning zone 
travel with the same velocity. The distribution of 
the states and velocities of the gas behind a detona-
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(1) 

where E is the activation energy for the reaction, 
R is the gas constant, and n is a constant. 

To simplify the discussion, it will be assumed 
in what follows that during the induction period T 

there is no reaction at all, but that all the heating 
occurs instantaneously at the time T. The distribu
tion of pressure in the detonation wave for this ap
proximation is shown in Fig. 3. The temperature 
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FIG. 4 

and density distributions for the gas in the wave 
are analogous. 

In Fig. 4 the compression shock front of the de
tonation wave is shown as a plane AA, perpendicu
lar to the plane of the paper, and the heating front 
is represented by the surface JJ. On the heating 
front there is a perturbation BCB. This will arise 
if the flame induction period is lengthened in the 
regions marked b, and shortened in the region c 
- as a result of the non-uniformity of the burning 
mixture entering the flame zone, for example. To 
the right of this wavy surface JBCBJ, the gas is 
compressed to the pressure P A• while to the left 
the pressure is equal to the lower value P J· The 
values of P A and P J can be found from the P-V 
diagram, Fig. 1. 

During the first few moments after the forma
tion of a perturbation, the Jouguet conditions are 
fulfilled at points B, C, and B; along the direc
tion of wave motion, the state and velocity of the 
gas remain the same as they were before the per
turbation. However, in the direction perpendicular 
to the direction of propagation, the gas is set into 
motion and the pressure discontinuity that has been 
built up across the combustion surface begins to 
break up. The gas at the locations bb, being at 
the higher pressure, will expand adiabatically, and 
rarefaction waves will move into these regions, as 
shown by the dashed lines. The gas expanding out 
of bb will flow into the region c, compressing 
the gas in it. On the plane J -J, the pressure will 
be smoothed out to some value intermediate be
tween P A and P J. In the neighborhood of the 
points B, B the gas b expands to the pressure 
P J• while near point C the gas c is compressed 
to the pressure P A. 

In the regions b the detonation wave expands 
as if it were in a divergent cone. The compression 
at c, on the other hand, is equivalent to the con
centration of a wave in a converging cone. To the 
right of the region c the induction period is de
creased, because of the overcompression of the 
detonation wave; while in the regions bb the in
duction period is lengthened because of the re
duced pressure. The original perturbation BCB 

spreads out, as shown by the arrows in Fig. 4, 
and the ignition front loses its stability. 

It should be noted that, when the gas in the re
gions bb begins to expand and the gas at c is 
compressed, the Jouguet conditions at the points 
BB and C are destroyed and waves of pressure 
and rarefaction travel up to the plane AA and 
distort the shock-wave front. For a strong wave 
in a diatomic gas, the lateral extension of the dis
turbance along JJ is approximately three times 
as wide as the length of the burning zone by the 
time the initial disturbance has reached the shock 
front AA. 

Even if an initial disturbance of the type BCB 
is suddenly formed, the burning zone will become 
unstable only if the perturbation grows sufficiently 
rapidly; otlierwise the gas, in spite of its initial 
heterogeneity, will be able to escape from the vi
cinity of the ignition front, and the perturbation 
BCB will disappear. 

The relationship can be formulated quantita
tively as follows: if the adiabatic expansion of the 
gas from zone b into zone c, which lowers the 
temperature of the gas, increases the induction 
period of the reaction by an amount of the same 
order of magnitude as the induction period itself, 
or more, then any initial curvature of the front 
will be increased, and a plane front will not be 
stable. Reasoning in this way, and neglecting the 
dependence of the induction period on pressure or 
density, one is led to the expression 

(d-cfdT)/r )T- T A)?::- -c, (2) 

where T is the temperature of the unburned gas 
in region b after its expansion. 

From (1) and (2) we can obtain the criterion 
for the instability of a plane flame zone in a de
tonation wave: 

(E/RT A) (1- TfTA) ?::- 1. 

It has already been mentioned that near the 
point B the gas b expands to the pressure P J 

{3) 

of point J (Figs. 1 and 2), while near the point C 
the burning gas is compressed to the pressure P A. 
Formula {3) can therefore be re-written as 

(E/RT A) [1- (PJ fP A)<Y-1)/Y) ?::- 1. (4) 

The quantities occurring in equation (4) can be cal
culated readily for any concrete case. 

As an example, let us estimate the value of ex
pression (4) for a detonation wave in a diatomic gas 
with an activation energy of 40,000 cal/mole, prop
agating with a velocity of 1700 m/sec (M = 5). 

For an initial temperature of T 0 = 290°K, the 
temperature of the unburned gas behind the pres-
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sure front will be equal to 1650°K. In the detona
tion wave, the ratio of the pressure of the burned 
gas to the pressure of the unburned gas, P J /P A· 
is close to one-half, so that 

E [ P )(y-1)/yj 40 000 
R.T A l- ( ~ = 2·1650[ 1 - (1/2)0:4/1.4) = 2.2 > 1. 

The loss of stability of the flame front, as we 
have said, leads to disturbances in the shock wave 
front AA. This results in the formation of wrinkles 
in the compression front. Details of the surface 
irregularities and the formation of spin detonations 
can be found in references 1 to 4. 

If the width of the detonation wave front A. (the 
distance from the plane AA to the plane JJ in 
Figs. 2, 3, and 4) is small is comparison with the 
tube diameter d, then a large number 'of wrinkles 
may form in the compression front, over the whole 
cross-section of the tube. A total of ( d/3A. )2 

wringles may be formed in the whole area. Be
cause there is no a priori tendency for the disturb
ances to move in any one direction, they will prop
agate randomly in different directions with respect 
to the shock front surface. They will mutually in
terfere and will ignite the gas, particularly in the 
regions of constructive interference. As a result, 
the detonation wave front will take on the appear
ance of a pulsating brush. As the diameter of the 
tube decreases, or as the chemical reaction time 
increases (i.e., as the composition or the pressure 
of the mixture approach the detonation limit) the 
tube cross-section will contain fewer and fewer 
irregularities, until finally only one remains -a 
classical single-headed spin detonation. 

Intermediate between the single-headed spin de
tonation and the brush-like detonation front are the 
cases of spin detonation with two, three, and more 
heads. 

From the above considerations it is possible to 
derive the conditions for the formation of a single
headed spin detonation in a diatomic gas: the re
action zone thickness must be of the order of one
third of the tube diameter, or greater. 

3)..(d = 3't (D- W)/d?:- 1, (5) 

where W is the gas velocity in the density discon
tinuity, and d is the tube diameter. 

Instability of the ignition zone and a "brushlike" 
fine structure of the detonation front can also occur 
in tile detonation of condensed explosives. Spin det
onations are not observed in condensed explosives, 
apparently because the conditions for a single
headed spin are very close to the conditions for 
the failure of detonation near the limiting diameter 
for an unconfined charge. It is possible that spin 
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FIG. 5 

" FIG. 6 

might be observed in a small-diameter charge en
cased in a very strong confining tube. 

Some years ago Apin5 put forward a "jet" mech
anism for the propagation of detonations in con
densed explosives. He, too, proposed a brush-like 
structure for the front of his jet detonations. Apin 
ascribed the formation of the "brush" to the pro
jection of gas jets into the unburned material. The 
jets were assumed to be formed either by micro
scopic non-uniformities in the material or by mi
crocavitation in blisters or bubbles. 

It is probably more natural to explain the "brush
like" structure of the burning or detonation zone of 
condensed explosives by the instability of the plane 
ignition zone, and the formation of many irregular
ities in the wave front, which interfere with each 
other and ignite the unreacted explosive, just as 
in the case of gaseous detonations. 

T9 conclude this section, it should be mentioned 
that the instability of a plane ignition front in a det
onation wave was first considered by the author4 in 
1949. Zel'dovich and Kompaneets, 1 speaking of the 
conditions for the existence of spin detonations, re
marked that during the ignition of a gas the burning 
should be faster in a convex compression wave than 
in a plane wave. On the other hand, a convex front 
will not be concentrated as the detonation proceeds. 
The existence of a spin is therefore possible only 
if 'the magnitude of E/RT is sufficiently large. 
The critical value of this quantity is not to be found 
in the cited references. 

2. INSTABILITY OF THE IGNITION ZONE AS THE 
SOURCE OF HIGH-FREQUENCY VIBRATIONS 
IN FORCED COMBUSTION CHAMBERS 

Forced combustion chambers, e.g., in rockets, 
may (very schematically, of course) be repre
sented as shown in Fig. 5. In the region 0-A the 
components are mixed and preheated. In the space 
from A to J the mixture reacts by self-ignition; 
at the plane J the combustion reaction has been 
completed. 

The combustion process in a furnace is hydro
dynamically and thermodynamically analogous to 
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the combustion in a detonation wave. The state of 
the gas at the plane A can be described by some 
point A in Fig. 1. Its state when it reaches J is 
given by the point J in the same figure, lying be
lo\V A on a branch of the Hugoniot adiabatic, or 
{depending upon the burning rate of the mixture) 
by some other point J' {Fig. 6) which lies above 
J but below A. The gas thermodynamics of fur
nace combustion have been considered in detail by 
Troshin. 6 

For the case in which a preheated mixture is 
subsequently ignited in a furnace, the reaction 
time {the induction period for ignition) is found 
from an expression of the type {1). Because of the 
similarity between combustion in a furnace and 
combustion in a detonation, we may carry over to 
a furnace all the considerations and conclusions 
of the preceding section about the instability of 
a plane ignition front. 

We can write down the same criterion for the 
instability of a plane ignition zone: 

E [ ( P A -llP)(y-1)/Y] {6) 
RT 1- p A :>1. 

Here T is the temperature of the heated mixture, 
P is the pressure drop along the furnace due to the 
burning. In Fig. 6, if the state of the combustion 
products is characterized by the point J', the 
pressure drop P = P A - P J'. 

Just as in the previous case, the loss of stabil
ity in the plane front leads to the formation of a 
pulsating combustion zone. In view of the fact that 
in furnaces the velocity of the unburned mixture is 
always considerably less than the speed of sound, 
the width of the disturbances in the combustion 
front will be of the order of twice the width of the 
burning zone. We may therefore have 

(d/2'A)2 = (dj2-r.W)2 

disturbances of the combustion front over the 
cross-sectional area of the furnace. 

{7) 

We can now estimate the frequency of the pul
sations. Since this frequency will depend on the 
ratio {7), it is useful to begin by estimating the 
lowest possible frequency. This is the case where 
the expression {7) is numerically equal to unity, 
i.e., when the length of the burning zone is about 
equal to, or greater than, half the diameter of the 
chamber. This can be considered to be the funda
mental frequency of the furnace oscillations. 

The time required to develop a single pulse is 
of the order of A./ a = TW I a, since the instability 
is propagated with the speed of sound, a, because 
the disturbances which lengthen or shorten the in
duction period are propagated with the speed of 
sound. However, the recovery of the perturbed 

front varies with the rate at which the unignited 
gas replenishes the combustion zone: 

lrec~A/W' = -rWjW =T., 

i.e., the time taken for the front to recover from 
a perturbation is of the order of the ignition induc
tion period, T. Since W is always small compared 
to a, and the time interval TW /a can be neglected, 
the order of magnitude of the fundamental frequency 
is 

"o = 1/T.. {8) 

If the length of the combustion zone A. = TW is 
noticeably less than the chamber diameter, and if 
we consider the pulsations to be random and unsyn
chronized over the cross section of the chamber, 
then the upper limit of frequency can be obtained 
by multiplying {7) and {8): 

1(d)2 1(d)2 
"·max= T 2-cW = T 2). • {9) 

It is easy to estimate the order of magnitude of 
these frequencies. For a light gasoline, for ex
ample, which we may take to be composed entirely 
of heptane, in a furnace where the mixture is pre
heated to 700°K, the induction period is 

't = 1Q-1uessooo/2•7oo = 2.5·10-a sec. 

The fundamental frequency is therefore 400 cycles 
per second. The length of the burning zone for this 
case, if the velocity of the unburned gases is as
sumed to be 50 m/sec, is equal to A.= 50 x 2.5 x 
10-3 = 0.125 m. In a chamber one meter in diam
eter the maximum attainable frequency is: 

1 ( 1 )2 '~max= 2.5·10-s 2·0.125 =6400cps. 

Each pulse in the combusion front produces a 
pressure wave in the chamber with an amplitude of 
the order of .6-P {Fig. 6). This wave will spread 
out from the location of the disturbance, decaying 
rapidly. In• themselves, waves such as these ap
parently constitute no danger to the furnace. How
ever, if the oscillation of the flame front resonates 
with one of the proper frequencies of the gas in the 
furnace {either longitudinal or transverse) dan
gerous vibrational forces may be set up in the 
chamber, with a large pressur.e drop across the 
wave fronts. 

The resonant frequencies are of the order of 
magnitude of 

"P = kaJL. {10) 

where a is a quantity close to the mean speed of 
sound in the chamber, L is a characteristic di
mens ion { length or diameter) of the chamber, 
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and k is the order of the harmonic. 
It can be seen from a consideration of the in

stability condition (6) that resonance could produce 
dangerous results. Expression (6) shows that the 
flame will begin to oscillate if a rarefaction wave 
with an amplitude of the order of D.P would notice
ably increase the induction period for combustion; 
a compressive wave of the same strength would de
crease the induction period. Consequently, com
pressive waves with amplitude D.P moving through 
the hot gas will accelerate its combustion. As they 
pass through the unburned mixture, they "ignite" 
it in their paths, picking up the energy of combus
tion as they go, and so increasing in amplitude. 
This provides a mechanism for increasing the 
amplitude of resonance oscillations. 

We can now attempt to estimate the order of 
magnitude of the pressure drop attainable in a 
compression wave during resonance oscillation in 
a combustion chamber. For this purpose we may 
use a crude, almost unreasonable model: waves 
travelling in the region of hot, unignited gas will 
be assumed to compress the mixture at almost 
constant volume, while waves in the remaining 
parts of the chamber will be treated as simple 
decaying shock waves. 

The maximum pressure drop in a travelling wave 
can be approximated (very roughly, of course ) by 

1:1Pmax = P A (rc- 1) Wfa, (11) 

where 1r is the increase in pressure which would 
result from combustion at constant volume. One 
of the crudest approximations made in the deriva
tion of equation (11) is the assumption that the flow 
rate of gas out of the chamber, and consequently 
the pressure in the chamber, are not affected by 
the oscillation. A number of other factors are also 
ignored. 

Using formula (11) with 1r = 10, for the same 
numerical example used above, one obtains 

1:1Pmax = PA (10- l) 60/ 600 = 0.75 P A ~P A· 

During resonance oscillations, therefore, the 
pressure drop in the compression waves can, if 
the chamber is strong enough, reach a value of the 
same order of magnitude as the total chamber pres
sure itself. 

It must be emphasized again that throughout this 
entire second section, we have been considering the 
combustion very schematically, and that the con
clusions are of a qualitative rather than a quantita
tive nature. 

In conclusion, it must be remembered that quali
tative evidence for the role which the induction pe
riod for combustion plays in setting up high-fre
quency oscillations in combustion chambers has 
already been presented. See, for instance, the 
work of Crocco which is mentioned in reference 7. 
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