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WE have recently1 formulated the electrodynam­
ics of superconductors that contain small atomic 
concentrations of impurities at T = 0. The method 
of reference 1 is not applicable at finite•tempe~a­
tures. 

The authors of the present paper obtained, to­
gether with I. E. Dzyaloshinskii, a generalization 
of the method applied at T = 0. It was basically 
founded upon the formulation of the thermodynamic 
theory proposed by Matsubara. 2 An exposition of 
this method will be given in a separate paper. We 
note here only that the evaluation of the basic func­
tions at T ;>' 0 is formally very similar to the cal­
culations at T =. 0. In the case of equilibrium prac­
tically the only change involved is the replacement 
of the integrals over the frequency by sums over 
the discrete variable 
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where wn = ( 1rTI11 )(2ft+ 1), and T is the tem­
perature in energy units. 

This method was applied by us to study the equi­
librium properties of super conducting alloys at fi­
nite temperatures. All calculations are exactly the 
same as the evaluations performed1 for T = 0 
apart from the transformation (1). 

The evaluation of the functions G ( x, x') and 
F ( x, x') leads to the conclusion that in alloys, as 
a.t T = 0, these functions are simply multiplied 
by an exponential factor 

G (x x') '= G0 (x, x') exp {-[x- x' !12l}, 
(2) 

F (x, x') o= F0 (x. x') exp {- I x- x' I I 2l}, 

where l is the mean free path in the normal state. 
To find the thermodynamic functions it is suffi­

cient to determine the particle density N ( J.l., T) 
as a function of the chemical potential and temper-
ature: 

N = (<p+ (x) ~ (x)) =- i [G (x, x')Jx=x';t==t"-o· (3) 

One sees easily that the function N (JJ., T) is 
the same as in the case of a pure superconductor. 
In the model under consideration, where one as-

sumes that the impurities do not influence the in­
teraction between the electrons, but only scatter 
them, the occurrence of impurities will therefore 
not change the thermodynamic functions. In par­
ticular, the critical temperature T c is not shifted. 
We emphasize once again that this result is, of 
course, valid only if the impurity concentration is 
supposed to be small. 

We have considered the behavior of alloys in a 
constant magnetic field. The connection between 
the current and the vector potential is local in the 
London case. At finite temperatures it is of the 
form 

j = -QA, (4) 
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where wn = (1TTI11)(2n+ 1); .:l(T) the tempera­
ture dependent "gap" occurring in the paper by 
Bardeen, Cooper, and Schrieffer;3 Ttr = -
[ J w ( fJ ) ( 1 -cos fJ ) dQ] -t is the transport collision 
time for the metal in its normal state, and N is 
the electron density. 

From Eq. (4) together with the Maxwell equation 
one obtains the connection between Q and the pene­
tration depth: 

o = lfcl4rcQ. (6) 

In the limiting case of large free paths, .:lTtrl11 
» 1, this formula goes over into the usual result 
for a pure London superconductor, i.e., a supercon­
ductor with o » 11v I .:l : 

(7) 

where Ns is the number of superconducting elec­
trons (see Ref. 3), 

In the opposite limiting case, .:lTtrl11 « 1, 

o = (cl2r:) [1ii!J.,. tanh(!J.I2T)]'h, 

(8) 

(9) 

where a = Ne2Ttr lm is the conductivity of the alloy 
in the normal state. 

It is well known that superconductors fall into 
two classes. For London superconductors {j > 11v I .:l. 
In that case the connection between .:l and 111 Ttr 
can be arbitrary. In the case of the Pippard super­
conductors, for which o < 11vl.:l, the condition 
o » l leads to .:lTtr 111 « 1. Hence, only Eq. (9) 
refers to Pippard superconductors. 

As was noted in reference 1, all formulae ob­
tained for o can by analogy with this be applied 
for the characteristics of films of thickness d « o. 
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In that case the quantity o no longer plays the role 
of the penetration depth, but this quantity goes over 
into the effective dielectric constant for low frequen­
cies and determines the magnetic susceptibility. 
Since the connection between j and A is local, 
E and x, expressed in terms of o, have the usual, 
London form: 

(10) 

1 ( 21> d ) 1 ( d )2 
X = 47t 1 - ([ tanh 2a ::::: - 127t 2i3 · (11) 

In conclusion the authors express their gratitude 
to Academician L. D. Landau for discussions of this 
paper. 
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IT has been pointed out1- 3 that longitudinal plane 
waves are excited if a medium exhibits spatial dis­
persion; Ginzburg has noted1 that a very convenient 
means for the excitation of these new waves may be 
the Cerenkov effect. 

In this connection it is of interest to develop the 
theory of the Cerenkov effect as applied to the case 
in which longitudinal electromagnetic waves are 
excited by an electron. We consider an isotropic 
medium. We start by noting that one cannot use 
the usual Lagrangian L = ( EE2 - H2 )/811" because 
the energy density of the field, given by the expres­
sion ( EE2 + H2 )/811", vanishes for longitudinal waves 
(both H and E vanish). 

In order to avoid this difficulty we start with the 
Fock-Podolsky Lagrangian,4 making the necessary 
extension to the case of an isotropic madium. We 
have 

where E and H are the intensities of the electric 
and magnetic fields respectively, A is the vector 
potential, cp is the scalar potential and n is the 
index of refraction ( n is considered an operator, 
cf. reference 5 ). 

Introducing the existence condition for a longi­
tudinal field, curl A= 0, and the fact that there 
are no free charges, ( cp = 0 ) , using the analysis 
in reference 1 we find the following expressions 
for A and the energy density respectively: 

{~- (n2iJ2jc2iJt2)} A= 0, 

T 44 = {(div A)2 + (3nAjc3t)2}/87t. (2) 

In order for Eq. (2) (vector potential) to be con­
sistent with the field equation in the medium, the 
condition E:E = n2 { E - Ko ( E • Ko)} must be satis­
fied; this follows from the analysis in reference 1. 

Now, writing the solution of Eq. (2) in the form . 
A ~' L-a 2J lfi~tch/;;{1 fa exp (- ic !:__ t + iY.·r) 

l \ n 
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we find the energy of the longitudinal field: 

H = .2J (clixjn) (a·ca), 
"/. 

(3) 

where tiK and ctiK/n are the momentum and en­
ergy of the longitudinal photon. To satisfy the ex­
istence condition for longitudinal waves explicitly 
we write 

(4) 

then, using Eq. (3) in the usual way (cf. reference 
6), we find that the operators g and g+ satisfy 
the Bose commutation relations. The phenomeno­
logical quantum electrodynamics developed above 
for the longitudinal field agrees in form with that 
given in reference 6 - the only differences lie in 
the meanings of the operators a and a+. Hence, 
in applying the analysis to the Cerenkov effect we 
can use the results obtained by Sokolov.7•8 Substi­
tuting Eq. (4) in Eq. (8) of the paper by Sokolov and 
Loskutov8 and assuming that there are no longitudi­
nal photons at t = 0, after some elementary 
transformations we find the following expression 
for the energy radiated per unit length of path 
in the form of longitudinal waves: 


