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A qualitative study of the levels of a Mott exciton in ionic crystals is made from the point of 
view of a many-electron theory. A many-electron discussion of the exciton reduces to the 
problem of the motion of two quasi-particles which in the case of triplet states ( ortho-exciton) 
interact through Coulomb forces and in the case of singlet states (para-exciton) through Cou
lomb and exchange forces. These forces are approximately evaluated using a model in which 
the electron states at the cation site and the vacant states at the anion site are supposed to be 
spherically symmetric. The ortho- and para-exciton series of a non-polarizable exciton of 
large radius are evaluated using a generalized effective mass method. An estimate is given 
of the influence of the difference from a point charge Coulomb potential on the magnitude of 
the l-splitting. Using group theory a general level scheme is given for an exciton for the 
case K = 0 for the Oh group, and the results are compared with the yellow exciton series 
in a Cu20 crystal. The properties of an exciton in a magnetic field are discussed. 

1. A MANY -ELECTRON DISCUSSION OF THE 
PROBLEM 

A Mott exciton in strongly polar crystals is the 
result of a transition of an electron from an exter
nal, filled p shell of the anion into a vacant state 
of the s shell of the cation. The extra electron 
and hole obtained in this way form a system simi
lar to a hydrogen atom. Its states have been con
sidered in many papers .1- 9 In the paper by one of 
the authors [reference 9, Eq. (8)] the wave function 
of the exciton in a crystal with undisplaced ions was 
written as a linear combination of wave functions 

linear combinations of the C functions which are 
eigenfunctions of the operator of the square of the 
total spin of the system. For a singlet state S = 0 
and the corresponding function, designated by an 
index ~ , is equal to 

C (G, s, H, M, S1, S2 ) of all electrons in the crys
tal for which an electron from the external p shell 
of the anion site H with magnetic quantum number 
M had gone into the s shell of the cation site G 
with spin St. while the anion site remained with a 
spin S2• These were of the form 

C (G, s, H, M, S~> S2) 

= L; (-l)"P" ll8hma (QhmaShma) 8GsS1 (QGsS1 SI), 
' hma 

(h, m, cr) =F (H, M, - S2), (1) 

where ® are one-electron orthonormal func-
tions, P the electron permutation operator, v 
the parity of the permutation, q and Sz the co
ordinate and spin of the electron; h numbers the 
anion sites of the lattice, m and a number the 
states in the anion p shell. 

It is convenient to choose as the basis functions 
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'P'( G, s, H, M I I:) = [C (0, s, H, M, 1/z,- '/2) 

(2) 

For S = 1 there are three functions. It is con
venient to choose these in such a way that they go 
over into one another under the action of the ~ 
group. 10 We distinguish them by indices ~. TJ, 
and t: 

'P' (G, s, H, M I e) = [- c (0, s, H, M, 1/z, 1/2) 

+C(O,s,H,M, - 1/z, - 1/z)l/V2, 
'P' (0, s, H, M, I 'tj) = [C (0, s, H, M, 1h, 1/ 2) 

+ C(G, s, H, M, - 1/ 2 • - 1/z)l(i/V2). (3) 

o/ (G, s, H, M I C) = [C (G, s, H, M, 1/2, - 1/2) 

+ c (0, s, H, M, - 1/2. 1/z)] I V2. 
The wave function of the crystal in the general 

case will be 

o/ = L;<D (0, H, M I/) o/ (G, s, H, M II), (4) 
OHM/ 

where I takes on four values ~ , L T/, and t, 
while M takes on three values. The sum over 
G and H extends over the whole of the crystal. 

For an exciton moving with wave vector K, the 
function <I> must tend to zero as IG- HI increases, 
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and if G and H are translated over a lattice vec
tor distance it must be multiplied by an exponential 
factor, so that 

iD (0, H, M If)= exp [iK, xO + ~H] 'fv(G- H, M I/), (5) 

where v denotes all the quantum numbers charac
terizing the relative motion in the exciton. The av
erage of the crystal Hamiltonian taken over the 
function -.¥ ( 4) is equal to 

sEv (K) = ~ ~ LerdO- O',s)exp[iK, <X (0- 0')] 
OO'HM/ 

X 'f: (0'- H, M i /) Cflv(O- H, M I/) 

-~ ~ , Letf (H- H', M, M') exp [iK,~(H- H')] 
HH'OMM I 

X c;;:(O-H', M'l/)q;.(G-H, MJ!) 

1 "' + N LJ exp [iK, x (0- 0') 
OO'HH'MM'/ 

+~(H-,-H')][-F(G, s, H', M'; G', s, H, M) 

+ 2o (S) F (0, s, H', M'; H, M, 0', s)] 

X 'f: (0' - H', M' I /) tf'v (0 - H, M I/) 

(6) 

if we neglect the spin-orbit interaction. This ex
pression separates into two parts corresponding 
to S = 0 when I = ~ , and S = 1 when I takes 
on the three values L 11, t. In our approxima
tion the states with I= ~. 11, t can be also sep
arated, but in the following we shall choose linear 
combinations of them corresponding to a well de
termined symmetry. According to reference 9, 
the coefficients Leff are equal to 

Here 

Leff, (0- 0', s) = L (0, s,; G', s) 

+2~F(G, s, h, m; G', s, h, m) 
bm 

- ~ F(G, s, h, m; h, m, 0', s), 
11m 

Lett (H- H', M, M') =L (H, M; H' ,M') 

+ 2 ~F (h, m, H', M'; h, m, H, M) 
hm 

- ~F(h, m, H', M'; H, M, h, m). 
hm 

(7) 

L(f, "A; f', "A')= ~e;~.(q)[- 2~ v~ + V(q)]Eln:(q)dq, 

F (f1, '-1• f2, l.z; t;, 1.;, t;, "A;) (8) 

~ e ;,,,, ( Q1) e;,~., ( q.)e 1' ), '( ql) e 1, ~., ( q.) dq 1dq2 
_ e2 1 1 2 2 , 

- Jql-Q21 

where V ( q) is the potential produced by the cores 
of all the ions in the lattice, f takes on the values 
G and H; A. takes on the values M and s. For 
G = G' Leff ( G - G' , s ) can be interpreted as the 
average kinetic and potential energy (including ex
change) of the interaction of an excited electron 
with the cores of the ions and with all of the 6N 
valence electrons (the background) . For H = H' 
and M = M' Leff ( H- H', M, M') plays a similar 
role for a hole which has, as can be seen from the· 
signs, the opposite mass, charge, and spin. The 
third sum in (6) can, if G = G', H = H', M = M', 
be interpreted as the Coulomb and exchange inter
action of the extra electron and the hole. In the 
triplet states there is no exchange interaction be
tween the hole and the electron. Since the form of 
the "interaction potential" is different, states with 
S = 0 and S = 1 will have different energies. We 
shall call them para- and ortho-excitons. Since 
the electron spin can change during a photo-transi
tion due to the spin-orbit interaction, but with a 
rather "'_nall probability, we must expect that the 
ortho-exciton series will have a very low intensity. 
Since there are two quasi-particles present, the 
exciton states will be to some extent similar to the 
states of the He atom, but since the interaction 
potential is different for the two series from a point 
charge Coulomb potential, the [-degeneracy will be 
lifted. 

Overhauser10 has investigated the lowest states 
of a Mott. exciton for K = 0 in crystals of the NaCl 
and CsCl type, assuming that the electron goes over 
from the halide only to the first spherical configura
tion of Na+ or cs+ ions. He also showed the ex
istence of singlet and triplet states using group 
theoretical methods and gave the systematics of 
the lowest exciton terms. However, the restriction 
to the first spherical configuration is clearly insuf
ficient for a consideration of the excited states. 
Moreover, Overhauser did not determine the exciton 
levels. In a recent paper11 Takeuti considered the 
exciton in elemental semiconductors with one va
lence band and one conduction band, using Bloch 
functions. Restricting himself to a qualitative in
vestigation he also arrived at 'the result that there 
are singlet and triplet states present, an~ concluded 
that the difference between their levels in the so
called "hydrogen case" are negligible. Ortho- and 
para-excitons are thus described in his paper by 
the same equation. Our consideration is more gen
eral, and includes, in particular, his scheme and 
enables us to determine the exciton levels in a well 
defined approximation. Using the more general de
scription of the wave functions (2) to (5) we shall 
consider arbitrary exciton states and the case 
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K 7f' 0. For K = 0 we made a group-theoretical 
analysis of all exciton states for crystals of the 
group ~; the result of this analysis is given in 
the following, but an account of the method is given 
in a separate paper. In that way a method is found 
to understand the details of the exciton spectrum 
which is experimentally observed. Finally, we re
duce the determination of the exciton energy (6) to 
the problem of the motion of two quasi-particles, 
and in the case of excitons with a sufficiently large 
radius we shall give a numerical estimate of the 
Coulomb and exchange integrals and of the energy 
levels of the para- and ortho-exciton series, taking 
l -splitting into account. 

2. THE REDUCTION OF THE MANY -ELECTRON 
PROBLEM TO THE EQUATION OF MOTION 
OF TWO QUASI-PARTICLES 

The functional (6) can be rewritten in the form 
used by Dresselhaus8 who earlier assumed the pres
ence of two quasi-particles, where one of them is 
described by the states of a degenerate band. To 
do this we use the identity 

-} ~ Leff (H- H', M, M') exp [iK, ~ (H- H')] 
IIH'O 

X rp: (G - H', M'll) cp~ (G- H, M II) 

= ]Letdft> M, M')rp:(f, M'll)cpv (f- f1 , Mil) 
if, 

x exp[iK,~f1 ]= ~ tp:(f,M'I !)~Lett (f1 , M, M') 
f f, 

=] r.< (f, M' I/) E (~K + i\t. M, M') 'fv (f, M /I), 
f 

where we have put 

E (x, M, M') = ~ Leff; (f, M, M')exp(ixf). 
f 

The first term in Eq. (6) can be similarly trans
formed. In the last term we retain only the two
center integrals with G = G' and H = H'. We 
have then 

5£. (K) = ~ rp: (f, M I J) E-(ocK + ivt, s) cp. (f, M, /I) 
IMI 

- ~ cp: (f, M'/ I) E (pK + ivt, M, M:) tpv (f, M I I) 
fMM'l 

(9) 

(10) 

+ ~ [- K (f, M, M', s) + 2o (S) A (f, M, M', s)] 
IMM'I 

x rp: (f, M' I I) tpv (f, M I I). 

where 

E (x, s) = ~Lett (f, s) exp (ixf); K. (f, M, M', s) 
f 

= F (0, s, H, M'; 0, s, H, M); 

A (f, M, M' s) = F (0, s, H, M'; H, M, 0, s). 

Minimizing the functional (7) with respect to <Pt 
leads to a matrix equation for <Pv which is the 
same as Eq. (19} of Dresselhaus' paper.8 The 
physical meaning of the coefficients E ( K, s ) and 
E ( K, M, M') is easily ascertained, if we neglect 
the interaction between the electron and the hole 
and assume <Pv = N-1/ 2 cp ( M) exp (iKf}, where 

~ I cp (M) i 2 = I. (11) 
M 

In that case Eq. (10) separates into two parts: 

E (ocK - k1 , s)- ~ cp: (M') E (~K - k1o M, M') cp., (M). 
MM' 

(12) 

The first term is the energy of the electron in the 
band with wave vector aK- kl> and the second 
term gives after diagonalization the energy of the 
three hole bands corresponding to a wave vector 
{3K-k1• 

The next problem is to find the form of the func
tion cp v ( f1 M I I) . In the general case cp v and the 
exciton levels depend on the exciton wave vector K 
which enters as a parameter into the functional (10). 
The next step in the investigation is performed only 
for the states with K = 0, into which transitions 
from the ground state of the crystal are allowed. 
We can write <Pv in the form of an expansion in 
spherical harmonics Y lm ( (}, cp ) which enables 
us to classify not only states of small radius, but 
also states of large radius: 

'fv (f, M I /) = ~ Y lm (& f ¢r) Rvtm ( I f I , M I I). (13) 
lm 

Here ef, <Pf are the polar angles which determine 
the discrete lattice vector f. Using group theory 
one can show, how, indeed, a combination of spheri
cal harmonics leads to the expansion (13) 

3. GROUP THEORETICAL CLASSIFICATION OF 
EXCITON STATES WITH K = 0 

In contradistinction to Overhauser's considera
tions which assumed to begin with that the electron 
moved around a fixed hole and along the nearest 
spherical configuration, and then let the system as 
a whole be translated, we shall start from the very 
beginning with arbitrary motion of the electron and 
the hole. 

Substituting the expression for an arbitrary func-
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tion which possesses translational symmetry (5) and 
(4) we get for K = 0: 

'Fv = ~ CJ?v(f, MI/)'F(f, Mf/), (14) 
IM( 

where 

'F (f, M I/)=~ 'F (H -H. s, H, M I/). (15) 
H 

We choose to begin with the functions lJ! ( f, M I I) 
as the basis functions for the classification of the 
states. Since in our approximation the Hamiltonian 
does not contain the spin variable I, we can at first 
classify the states only according to the coordinate 
part of the function lJ! ( f, M). In the case of states 
of small radius, when we can restrict ourselves to 
the first spherical configuration, f will take on, 
for a lattice of the NaCl type, all six values 
(±d, 0, 0), (0, ±d, 0), (0, 0, ±d) which we shall 
denote by ±fx, ±fy, ±fz· Each value of f can be 
combined with one of the three values of M. The 
indices Mx, My, Mz will denote states of an 
electron in the p -shell of the type xf ( r ) , yf ( r ) , 
zf ( r). The space of the eighteen functions splits 
up into invariant subspaces corresponding to the 
irreducible representations: 

r18 =r1 +r3+r4+2r~+r~. (16) 

As will become clear in a moment, only transitions 
into states arising from r4 and r5 are allowed, 
after multiplication by the spin functions. These 
irreducible representations correspond to the 
functions 

r~ 
['F(fx, Mx) + 'F(- fx, Mx)J/V2 

['Y(fy, Mu)+'¥(-fu, Mu)J!V2 

['F(fz, Mz) + 'F(-fz, Mz)J/V2 

r~ 

{['¥ (fy, Mx) +'I"(- fu, Mx) + 'F (fz, Mx) + '¥ (- fz, Mx)J 

{['Y(fx, Mu)+'¥(-fx, Mu)+'F(fz, Mu)+'¥(-f., My)] 
1 
2['¥(fx, Mz) + '¥(-fx, Mz) + 'F(fy, Mz) + '¥(- {y, Mz)J 

r~ (17) 

{['F(fy, Mx)+'¥(-{y, Mx)-'Y(fz, Mx)-'¥(-fz, Mx)] 
1 
2['¥(fx, Mu)+'F(-fx, My)-'Y(fz, My)-'¥(-fz, My)] 

{r'Y(fx, Mz)+'¥(-fx, Mz)-'Y(fy, Mz)-'¥(-fu, Mz)] 

Instead of the functions r4 which we have writ
ten down we can also take a linear combination of 
the corresponding lines of the two equivalent rep
resentations. In that case we get, in particular, the 
completely symmetric function 6-1/2 ,L; lJ! (f, Mx), 
and also the function f 

3-'/'f'Y(fx, Mx) + '¥(-fx, Mx)- 1/d'F(fy, Mx) 

+'¥(-fq, Mx)+'Y(fz, Mx)+'¥(-fz, Mx)]}, (18) 

which occurs in Overhauser' s paper .10 

For states of arbitrary radius we can choose, 
according to the expansion (13) and Eq. (14) as 
basis functions 

Xv(lmiM)=)J'F(f, M)Ytm(61¢1)Rvtm([fiM). {19) 
I 

One can easily see that now expansion (13) must 
contain either only even, or only odd l. The al
lowed transitions correspond to the first states. 
If we restrict ourselves to only harmonics with 
l = 0 and l = 2, the space of the eighteen func
tions splits into subspaces according to the irre
ducible representations r2 + r; + 3r4 + 2r5. 

The wave functions of the bases of the irreduc
ible representations r4 and r5 will be the follow
ing: for the first representation of r4 we have 
three functions of the kind 

~Rvo(lf/)Yoo(61¢1)'¥(f, Mx), {20) 
I 

which differ in the index M; similarly for the sec
ond representation of r4 

'\1 1 A 
.LJ Rv2o (/ f /) 2 [3cos2 (fx)-1] '¥ (f, Mx); 
I 

and for the third representation of r4 
"\_\ A 

.LJ Rv22 (If l)[cos(fx) '¥ (f, Mx) 
I 

A '"-+ cos (fz) 'F (f, Mz)] cos (fy). 

For the first representation of r5 we have 

(21) 

(22) 

)J sin2 (~)cos (2¢xz) Rv22 (/ f!) '¥ (f, Mz), (23) 
I 

where Cflxz is the angle between f and the xz
plane; for the second representation of r5 

~Rv22(!f!)[cos(h)'F(f, Mx) 
f 

A A 

-COS (fz) '¥ (f, Mz)] cos (fy). (24) 

If we write down the wave functions of the spin vari
able I, the basis remains the same for the singlet 
states, and transitions into r4 states are allowed. 
For a triplet state the number of basis functions 
increases by a factor three and the 54 functions fall 
into groups according to the following irreducible 
representations: 

(r~ + r; + 3r~ + 2r~) X r 4 

= 3r~ + 2r~ + sr~ + 6r~ + ?r~. (25) 
We shall give one function of each of the irre

ducible representations of r4. 
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The first representation of r4: 
2JRv2o(\f\)Y00 (6r¢r)[-'¥(f, My[~) 
f 

(26) 

the two other functions are obtained by a cyclic 
permutation of the variables x, y, z and ~, 11, 
t. The second representation of r4: 

1 "l .A 2 .LJ Rv2o (/ f I) [(3cos2 (fy)- 1) '¥ (f, My\ q 
f 

+ (3cos2 (f~- 1) 'F (f, Mzl '11)]. 

(27) 

The third representation of r4: 
~ Rv22 (If\) [sin2 (f~ COS (2¢xz) '¥ (f, Mz \ "'1) 

f 

+ sin2 (fy) cos (2¢xu)'¥ (f, My lq]. 
(28) 

The fourth representation of r4: 

~ Rv22 (If I) {cos (f~ [cos (tY) '¥ (f, My!~) 
f 

.A 

+cos (fz) '¥ (f, Mz I q] (29) 

A .A A 

-cos (fz)[cos(fx) 'I'' (f, Mx I e)+ cos (fy) '¥ (f, My I~)]} 

and so on. 
The exciton eigenfunctions will be linear com

binations of the corresponding lines of these irre
ducible representations, different for S = 0 and 
for S = 1. From the point of view of this more 
general consideration, the level schemes for a 
NaCl and for a CsCl crystal must be identical, 
since their lattice symmetry is the same. The 
different number of states obtained by Overhauser 
is connected only with the different number of basis 
functions, he took, since he restricted himself to 
only one coordination sphere. The differences be
tween the exciton spectra of these crystals must 
lie only in the individual spacing and intensity of 
the different lines. 

4. EXCITON LEVELS IN THE MACROSCOPIC 
APPROXIMATION AND A VERY SIMPLE 
VARIANT OF THE EFFECTIVE MASS METHOD 

If the expansion in spherical harmonics contains 
a limited number of terms, it was shown by the fore
going considerations that the wave functions without 
spin are not separated as far as the quantum number 
M is concerned. As a result there will enter into 
the functional (10) not only diagonal terms in M, 
and the equation corresponding to this will for K = 0 
have the form 

E (i\ir, s) 'flv (f, M)- ~ E (iVf' M, M') ?v (f, M') 
M' 

+ ~(-K(f, M, M', s) + 2o(S) A(f, M, M', s)] 
M' 

(30) 

In the present paper we shall, in order to simplify 
the calculation, neglect the off-diagonal elements 
in M in Eq. (30). Account will be taken of these 
terms in a separate calculation. Equation (27) then 
simplifies to: 

E(i\if' s)q;v(f)-E(iV1, M, M')r.pv(f)+ 

+[-K(f,M,M,s) (31) 

+ 2& (S) A (f, M, M, s)] C,\ (f)= 5£,1\ (f). 

We restrict our considerations to an exciton of 
large radius. We can then consider f to be a con
tinuous variable and go over to the effective mass 
method ( E.M.M.) equation. We shall consider the 
simplest case when both the electron and the hole 
band have a unique minimum at K = 0, and, more
over, F ( k, M, M) does not depend on the value of 
M. Both bands are then spherically symmetric. It 
is known that for a number of real crystals the 
bands have several energy minima and do not pos
sess spherical symmetry, and in the case of degen
erate bands one can not expand in powers of K. 
The corresponding exciton spectra will be much 
more complicated than the ones obtained in our 
approximation. We shall concentrate our attention 
here mainly on ascertaining the role of the exchange 
potential and an estimate of the magnitude of the l
splitting and of the level shift compared to the hy
drogen series. As is clear from (6), the many
electron approach to the problem leads to the ap
pearance of another interaction, apart from the 
Coulomb and exchange potentials namely of each 
quasi-particle with the background electrons. The 
influence of the background on the interaction of 
the electron and the hole was considered by Sa
moilovich and Korenblit.4 This interaction leads, 
moreover, to the fact that at large distances the 
Coulomb interaction is divided by the square of 
the index of refraction n~. This was in different 
approximations shown in the papers of Kohn12 and 
Liberberg-Kucher .13 At distances of the order d 
and d .../2 ( d is the distance between nearest neigh
bor ions) the error in dividing by n~ is about 10 
to 20%. In our considerations this last effect will 
not enter explicitly, but the final result for both 
functions will be divided by n~. If f = I G- H I :::: d 
the error is again small and the contribution of this 
potential at smaller distances is small (especially 
for a para-exciton). Expanding E ( iv'f, s ) and 
E (iV'f, M, M) in powers of iV'f up to 'Vi inclu
sive, we can write Eq. (31) in the form 

1;_2 2 1i•d• 4 e2 s 
--vcp --Vcp ---[K(r)-2o(S)A(r)]cp= Ecp. 2p. v p.c v n~ v v v 

(32) 

It is different from the equation used by other au-
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thors 2- 8 through the presence of the exchange po
tential A ( r), the fact that K ( r) differs from 
1/r and the fact that the following E.M.M. approx
imations are taken into account. The quantity c 
depends on the structure of the cation and anion 
lattices (see Appendix 1 ) . Here r = I G - H I is a 
continuous parameter. The approximate estimate 
of the integrals K ( r) and A ( r) is performed 
with hydrogen-like functions of the 1s type. The 
equation which is then obtained is quite complicated 
(see Appendix 2 ) but can be approximated quite 
simply: 

- 5 V (r) I (e2 In~)= K (r)- 2o (S) A (r) 
2 exp ( v5 r) (33) 

= ~ I "\' VS eXp (- TSf) __L VS \- '3 
r 1 .:...: k k · 3 r 

k=l 

through a suitable choice of the parameters V~, 
y~ for each value of the spin S = 0 and S = 1. 
· Equation (32) was solved by the variational 

method using the trial functions 

,. (r) - x'1•R (xs') Y (6"'-) (34) 
'r'ntm - s nl na lm 't' ' 

where a= aBn~/J.t is the effective Bohr radius, 
aB = ti2/me2, Xs the variational parameter. The 
average value of the energy, evaluated by using the 
functions (34) and taking (A2.8) and (A2.9) into ac
count, is equal to 

(35) 
S(d)2xi( 1 3) s ] -- - --- ------ L(x lnl). 
c a n I + 1/2 4n s 

The first two terms within the brackets corre
spond purely to the hydrogen problem, the third 
term is due to the term in V'4 and the fourth one 
to the difference between K ( r ) - 26 ( S ) A ( r ) and 
1/r. SL (Xg I nl) is given in Appendix 2. 

After finding the minimization parameter xs, 
the expression (35) for the energy turns out to de
pend on the orbital quantum number l. One sees 
easily that the Z-splitting between s and p levels 
varies as 1/n3. A numerical estimate will be given 
for a Cu20 crystal. 

5. THE THEORY OF EXCITONS IN A CRYSTAL 
OF THE Cu20 TYPE 

Since at the point K = 0 the difference between 
all groups vanishes, the classification of the states 
of large radius which was obtained for NaCl re
mains valid also for Cu20. We shall assume that, 
in accordance with reference 14, the hole can be 
on one of the o-- sites in one of three p states, 
and the electron on one of the cu+ sites in an s 
state. Such a mechanism of the formation of an 

exciton is not possible in only one way. At the 
present time also other possibilities are considered, 
on which we shall report separately. 

In Fig. 1 we have depicted the scheme of those 
levels of the para-exciton ( S = 0) and the ortho
exciton ( S = 1 ) for which transitions from the 
ground state are possible only through spin-orbit 
interactions. We have given only S and d states 
of relative motion, transitions into which areal
lowed. The distances between the levels are drawn 

FIG. 1. Scheme of the exciton 
levels in the crystal, into which 
a transition from the ground 
state is allowed. 
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FIG. 2. Potential energy curves for the para- (S = 0) and 
ortho- (S = 1) exciton in the macroscopic approximation. 

arbitrarily. The para-exciton levels must lie some
what higher, thanks to the presence of the repulsive 
exchange potential. Pavinskii and Zhilich15 have 
shown that due to the presence of two o-- ions in 
the elementary cell of Cu20 two hole states are 
possible: even and odd states. Taking this fact into 
account in our scheme led just to the occurrence 
of the second exciton series. 

Our considerations cannot give us the correct 
distances between the levels since from the various 
factors which produce the splitting we have only 
taken into account the difference in the potentials 
in their dependence on the total spin. For our nu
merical calculations we took for the parameters in 
the atomic functions {A2.1) for Cu a= 0.743/aB 
according to Slater16 and for o-- according to the 
results of Zhilich14 {for the radial part) {3 = 1.03/ 
a B. As a resu1t of this calculation we obtained an 
expression for K - 2A {Appendix 2) and found the 
values of the coefficients in the simplified Eq. {33): 

s = 0: v~ = -48.47fas; vg= 46.46/as; v~ = -1; 

s = 1: v~ =- 1.5541 as; Vi= 0; 

~~ = 1.5 I a B. 

{36) 
v~ = -1; 

~~ = 1.42 I a8 ; ~~ = 2.1 I a8 • 

For {3 = 1.18/aB we obtained values close to these. 
The corresponding curves are given in Fig. 2: 
- K ( r ) + 2A ( r ) for S = 0, and - K ( r ) for S = 1. 
The dotted line gives the point charge Coulomb po
tential. The rest of the evaluation of the exciton 
energy through Eqs. {35) and {A2.8) was performed 
for n~=2.5; !J-=0.253m, a=24.7aB. 

In Fig. 3 we have given the para-exciton levels 
taking the exchange potential and the term in V'4 

into account. We assumed also that the effective 
masses of the electron and the hole were the same. 
In that case c = 1/16 according to Appendix 1. 
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FIG. 3. Comparison of the yellow exciton series observed 
experimentally with the calculated ones: a - experimental 
data; 17• 10 b - calculated from a hydrogen-like exciton model; 
c - according to the representation of the present paper. 

Side by side we have given for comparison the re
sults of the experiments of Gross and coworkers17 •18 

and also the position of the lines for a purely hydro
gen series K(r) = 1/r, A(r) = 0. 

As can be seen from the figure the shift is ap
preciable for the s level of the para-exciton series 
and insignificant for all other levels of the para
and ortho-series. The lines with n = 1 {they are 
drawn to a different scale) turned out to be very 
weak experimentally; this cannot be explained in 
our scheme. The calculations show that the dis
tances between s and p levels of the same n 
vary for the given values of the parameters as 
30/n3 em - 1 for the para-series and as 1/n3 em - 1 

for the ortho-series. The comparative smallness 
of the Z-splitting produced by the difference of 
K- 2A from 1/r and by taking the terms in V'4 

into account is connected with the large radii of 
the exciton states in Cu20. 

We also investigated the influence of the differ
ence between K- 2A and 1/r and of the correc-
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FIG. 4. Shift of the "Ets, 0E2s• and 0 E2p levels from the 
usual hydrogen-like position as functions of the magnitude of 
the effective Bohr radius. 

tions to the E.M.M. "'V'4 on the magnitude of the 
l-splitting for different radii of the state in the 
simplest case when the effective masses of the 
electron and hole are assumed to be equal in the 
correction term "'v4• The results are given in 
Fig. 4 for the 1s, 2s, and 2p levels. The solid 
curves are the ones obtained without taking the 
term V'4 into account, and the dotted lines those 
with taking this term into account. The horizontal 
line gives the level of the purely hydrogen problem. 
The magnitude of the splitting increases steeply 
with decreasing effective Bohr radius. Simultane
ously the role of the corrections to the E.M.M. in
creases. The exact calculation of the l-splitting 
and the position of the lowest levels for small radii 
of the states must thus take into account the discrete 
structure of the crystal. 

In conclusion we note some peculiarities of the 
behavior of excitons in a magnetic field. The ground 
state of the crystal in which all spins and orbital 
momenta are compensated is diamagnetic and its 
energy in a magnetic field increases as H2• As a 
result of the absorption of light due to the presence 
of the spin-orbit interaction exciton states with 
S = 0 and S = 1 are formed. Since their energy 
levels differ appreciably because of the differences 

in the interaction potentials and in the character of 
the orbital motion, the spin-electron resonance in 
an exciton is essentially different from the spin
electron resonance in polarons and in localized 
centers with one electron. This difference consists 
in the fact that the energy necessary for a spin-flip 
of the exciton electron is equal to the difference be
tween the corresponding levels of the para- and 
ortho-exciton series. If the levels of the para
exciton series are situated above the correspond
ing levels of the ortho-exciton series, then the spin
flip of the electron in an external constant magnetic 
field which leads to the change of an ortho-exciton 
into a para-exciton, will be accompanied by the ab
sorption of two quanta of energy 

liw = 1° Ent - 1Ent + 21i0L , 

where OL is the Larmor frequency. In crystals 
where the levels of the para-exciton series are 
situated below the corresponding levels of the ortho
exciton series during the same mechanism of trans
formation of a para-exciton into an ortho-exciton 
quanta 

liw = 11 En/ - 0 Ent + 21iOL 

will be absorbed. The absorbed quanta in spin
electron resonance in excitons can correspond to 
an infrared frequency for some values of the quan
tity I 0Enz- 1Enzl. This is one of the different pe
culiarities of exciton spin-resonance absorption. 
Another property of it is, according to Deigen and 
Pekar19 the narrowness of the spin-resonance ab
sorption band. 

The exciton model considered by us can be gen
eralized both for the case of an exciton in elemental 
semiconductors and dielectrics and, in particular, 
for the case of a delta-function form of the function 
<Pv(G-H), that is, for a Frenkel exciton. One 
needs only let the position vector of the electron G 
take on the same values as the position vector of 
the hole H. The atomic functions in the case G = 
H will then be differe11t from the case of differing 
G and H. 

APPENDIX 1 

EXPANSION OF E ( -i'V) IN POWERS OF iV 

The behavior of E1 (k) for lattices with iden
tical ions with a face centered cubic cell of edge 
length D = 2d and an extremum at k = 0 is given 
in reference 20. Apart from a constant it has for 
small k the form 

£1 (k) = 1i2k2- '/i2d2 k4 + 1i2d2 (k4 + k4 + k4). 
2p.1 16p.1 48p.1 x Y z (1.1) 
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We shall approximate by replacing the cubically 
symmetric expression by a spherically symmetric 
one. We perform a similar operation for the ex
pression E2 ( k) for a body-centered cubic lattice20 
and replacing k by - iV' we get, apart from a 
constant 

where 

c - 40 (P.l + l'-2) 
- 2p., + 3p.l ' 

1 1 1 
- = --- -1- ·-' 

1'- l'-1 l'-2 

and 1J. is the reduced effective exciton mass. 

with only one difference, namely that we use for 
7J ( r) a different analytical expression which is 
more convenient for the integration: 

5 
-~(r) = 8 {1- 0.5exp [- 0.11 (~ + 0:4x) r]}, (2.3) 

where 

r = I G - HI and~> x. 

Using the expressions for the two-center inte
grals21 we find 

K (r)- 2A (r) 

(2.4) 
11=2 A' n=2 s' n=2 c' + e-2a.'r '\.~ _!! + e-2Wr '\.~ --": _c_ e-<a.'+Wlr '\.~ -~ 

· LJ ,n 1 .LJ ,n 1 .L.J ,n ' 
n=O n=O n=O 

where 

ex~• 40ex3 ~4 . • _ 20ex3 p4 • 

Ao = -(~'_ex")" (~'_ex')" , Ao - (~• _ ex•)• • 

ex4 p 40ex4 ~3 . · 20ex4 p3 • 

Bo = - (p"- ex•)' + (p'- ex•)•, Bo = - (p"- ex')"' 

c - 40ex3 ~ 3 (~-ex) . c' 20ex3~3 (~-ex) 
o - (~•- ex")" , o = - (~'-ex")" ; 

(~ 6 - 3ex2 p') 80ex3 ~3 (3ap - p2) 

AJ = - (p'- a')" + (p2- a')• 
(2.5) 

(3a•p 2 - a 6) 80a8p3 (3ap - a 2) 

Bt=- (p•-a•)• + (~•-a•)• 
C __ 80a3 p3 [ 4ap- (p- a)2] • 

L - (~"- a•)• , 

A~ = _ 40a9 ~ 3 (3ap- p2) • B~ = __ 40a3 p3 (3a~- a') 
(p 2 - a 2) 4 (~"-a')' 

· _ 40a3p9 [ 4ap- (p --ex)'] . 
cl- ([3'- a')· . , 

A2 = B2 = - ~· = 320(~·f_:_<~; a); 

. _ . c~ 160114p4 ([3 - 11) 
A2 = B2 = - 2 = C3'- a')• ; 

2x' = 2:x + o, 2W = 2~ + o, o = 0.11 (~ + 0,4:x). 

APPENDIX 2 

EVALUATION OF THE COULOMB AND EXCHANGE 
INTEGRALS 

With the aid of functions of the type 

we can write down the Coulomb and exchange inte
grals. The exchange integral A (r) can be esti
mated by Hellmann's method21 

(2.2) 

In evaluating the value of the potential (33) aver
aged over the functions (34) one comes across 
integrals of the following form: 

00 

X 3 ~ R~t (xr / na) rP e -yr r 2 dr = J~; ,Ynt (x). 
0 

They are given in a paper by Alder and Winther: 22 

jP· y X _ 4 (n + /)! (21 + p + 2)! x21+3221 

nl,nl()- [(2i+i)!]•n4t21(n-/- 1)!yP(ya)21f3 

xF2 (2l+p+3, l+1+n, l+l-n, (2.6) 

2l + 2 2l-+- 2 -~ -~ \ 
' · ' nay ' nuy) ' 

where F2 is the generalized hypergeometric func
tion with a circle of convergence 4x/yna ::::: 1. The 
average value of Sy (r) is, according to (34) and 
(2.6), equal to 

where 

21 + 2, 2l -i- 2, 2x5 \ 

nay~ J 

21+2, 2li-2.---5 , - 5 . 
. 2x5 2x5 ). } 

hay3 nay3 

(2. 7) 

(2.8) 
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Since the functions (34) are the solutions of the hy
drogen problem, the average values of the operators 
( _ n:2/2~-t) v2 and (- n2d2/~-tc) V'4 are respectively 
equal to 

1 G. H. Wannier, Phys. Rev. 52, 191 (1937). 
2I. M. Dykman and S. I. Pekar, Tp. H<I>AH 

YCCP (Transactions of the Institute of Physics, 
Academy of Sciences, Ukrainian S.S.R.) No.3, 92 
(1952). 

3I. M. Dykman, Tp. H<I>AH YCCP (Transac
tions of the Institute of Physics, Academy of Sci
ences, Ukrainian S.S.R.) No.5, 48 (1954). 

4A. G. Samoilovich and L. L. Korenblit, Usp. 
Fiz. Nauk, 60, No.2 (1956). 

5 K. B. Tolpygo, Doctoral thesis, Kiev (1958). 
6 T. Muto and H. Okuno, J. Phys. Soc. Japan 11, 

633 (1956). 
7 S. A. Moskalenko, Y'l. aan. KHmHHeBcKoro 

roc. yH-Ta (Sci. Notes, Kishinev State University) 
17' 103 (1955). 

8G. Dresselhaus, J. Phys. Chern. Solids 1, 14 
(1956). 

9 S. A. Moskalenko, OnTHKa H cneKTpocKonHx 

(Optics and Spectroscopy) 5, 147 (1958). 
10 A. Overhauser, Phys. Rev. 101, 1702 (1956). 
11 Y. Takeuti, Progr. Theoret. Phys. 18, 421 

(1957). 
t2w. Kohn, Phys. Rev. 105, 509 (1957). 
13 T. I. Liberberg-Kucher, J. Exptl. Theoret. 

Phys. (U.S.S.R.) 30, 724 (1956), Soviet Phys. JETP 
3, 580 (1956). 

14 A. G. Zhilich, BecTH. JirY (Bulletin Lenin
grad State University) 4, 31 (1957). 

15 p. p. Pavinskii and A. G. Zhilich, BecTH. JirY 
(Bulletin, Leningrad State Uri.iversity) 4, 50 (1957). 

16 Eyring, Walter, and Kimball, Quantum Chem
istry (Russ. Trans!.) GIIL, M. 1954, p. 218. 

17 E. F. Gross, Usp. Fiz. Nauk 23, 575 (1957). 
18Gross, Zakharchenya, and Reinov, Dokl. Akad. 

Nauk SSSR 99, 231 (1954). 
19M. F. Delgen and S. I. Pekar, J. Exptl. Theoret. 

Phys. (U.S.S.R.) 34, 684 (1958), Soviet Phys. JETP 7, 
471 (1958). 

20K. B. Tolpygo, J. Exptl. Theoret. Phys. (U.S.S.R.) 
21, 443 (1951). 

21 H. Hellmann, Einftihrung in die Quantenchemie 
(Russ. Trans!.) ONTI 1937, p. 516. 

22 K. Alder and A. Winther, Kg. Danske Videnskab. 
Selskab, Mat.-fys. Medd. 29, Nr 18 (1955). 

Translated by D. TerHaar 
21 


