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The potential between nucleons is calculated up to and including terms linear in the velocity 
(with recoil taken partially into account) without using perturbation theory. A potential is 
found which decreases as e - 2R and depends both on the coupling constant and on the cross 
section for rr-N scattering. 

ANALYSIS of experimental data shows1 that it is 
impossible to explain nucleon-nucleon scattering 
even at an energy of 90 Mev without a potential 
which depends on the velocities. Also, the LS po­
tential between nucleons has been considered ear­
lier only in perturbation theory .2 Therefore·, it is 
of interest to clarify the procedure of obtaining a 
potential that depends on the velocities from meson 
theory without using perturbation theory. 

In this article, the LS potential is calculated 
within the framework of a meson theory which is 
nonrelativistic with respect to the nucleons. In 
general, a number of objections have been raised 
against such a theory at one time or other: (a) The 
region of high virtual energies may be essential in 
the interaction of low-energy nucleons. (b) The in­
teraction Hamiltonian is not completely defined 
within such a theory (this is connected with the 
problem of a proper calculation of the role of 
nucleon-antinucleon pairs). However, in the case 
of the two-nucleon problem, one can consider the 
nonrelativistic approach to be well founded. The 
favorable situation here arises because of the res­
onance character of rr-N scattering. Because of 
this, the center of gravity of the matrix elements 
for rr-N scattering lies in the nonrelativistic re­
gion, and just this matrix element enters into the 
velocity-dependent two-nucleon potential. As re­
gards the interaction Hamiltonian, the method of 
calculating the potential developed below is not 
connected essentially with the type of interaction. 
We consider in this article only the potential that 
comes from pseudovector coupling. 

Instead of the perturbation-theory expansion, an 
expansion in rate of fall-off with respect to the dis­
tance R between two nucleons will be carried out 
in this article. The n'th-order potential falls off 
as exp (- nR ). (We use a system of units li = c = 
/.1. = 1, where /.1. is the mass of the meson.) We 
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calculate below potentials of type exp ( - R ) and 
exp ( - 2R ) . ( It would seem that potentials of higher 
order are not meaningful within the nonrelativistic 
approximation.) It turns out that only the potential 
exp ( - 2R) depends on the velocity. This potential 
contains, in addition to a term obtained in perturba-
tion theory, a term which depends on the cross sec­
tion atot for rr-N scattering. 

With the present state of knowledge, this cross 
section atot must be taken from experiment; in 
this way, the potential obtained might be called 
semi-phenomenological. In the static case, such 
a semi-phenomenological potential has been con­
sidered earlier by Klein and McCormick,3 Miya­
zawa, 4 and one of the authors. 5 

The calculation in this article is based on the 
methods of a theory of the scattering of "dressed" 
particles, which was given in reference 6 by one 
of the authors (we denote reference 6 by I). We 
consider the meson cloud of both nucleons to be 
the same as it would be in the absence of interac-
tion between the nucleons. The interaction arises 
both from meson exchange and from distortion of 
the meson clouds. 

Renormalization causes considerable difficulty, 
in general, in calculations other than perturbation 
theory ones. In this work, this difficulty does not 
arise, because we consider only the approximation 
linear in velocity, in which the problem of renor­
malization is the same as in the static case. 

In the classification of terms with respect to 
velocity, some arbitrariness arises, in the general 
case, in the definition of the potential2•7 since, on 
the one hand, terms of the type of the kinetic energy 
p2/2M are equivalent to static potentials of higher 
order and, on the other hand, as Levy showed, 7 

some terms in the velocity do not contribute to the 
scattering. The former is not important in our 
case, since we consider only potentials of the first 
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two orders, exp ( - R) and exp ( - 2R ) , where this 
arbitrariness is connected with the well-investigated 
static potential of fourth order in perturbation the­
ory. 2 ' 7 •8 Concerning the latter, those terms in the 
velocity which do not influence the scattering, have 
a characteristic form and are easily identified. 

INITIAL FORMULAE FOR THE POTENTIAL 

1. We denote by Wba the matrix element of the 
potential, in momentum representation, between 
states a and b of the system of two free nucleons. 
(Two-nucleon states will be labelled by letters a, 

.b, c .... ) The initial formula for Wba has the 
following form [see 1(28)]: 

Wla + Wt~ = W ba ~~ (<Db (H- Ea) <I> a) 

n.c 
P.., =--qn 

(1) 

Here lf!t} is the eigenvector of the complete Ham-
· iltonian H for a state with n mesons and energy 
En and two nucleons c with energy Ec; qn is 
the total momentum of the n mesons. Summation 
over n in Eq. (1) begins with n = 1 (there are no 
states in the sum which do not contain real mesons). 
Incomparisonwith 1(28), afactor (27T) 3 o(Pa-Pb) 
has been taken out, where P is the total momentum, 
and specialization has been made to the center-of­
mass system (c.m.s.). 

In the c.m.s., the Hamiltonian H for two nucle­
ons, interacting with the meson field, is 

(2) 

U () ---~,IV· iq•rt H )· V ·t( ) /(2 )" 1 r1 - ..:::..J l ,q e aq + .c. , iq = 1 a1·q -r:;q (J)q •'; 

r 1 =-r2 =R/2; (r)q=(l +q2)'1•; U=~qataq. 

The operators O'i and 'Ti relate to the i-th nu­
cleon; q denotes all quantum numbers of the me­
son. The term u2/4M appears in H from elimi­
nation of the center-of-mass coordinates. 

The functionals <I> a and <l>b describe the asym­
ptotic states of a system of two "dressed" nucleons; 
both <I>a and <l>b are solutions of the Schrodinger 
equation ( H- Ec) <I>c = 0, with the full Hamiltonian 
H, for R -co. The choice of <I>a and <I>b de­
pends on the type of approximation in which the 
potential is calculated. 

The connection between the desired potential W 
and the quantity Wba is established in the follow­
ing way. We represent Wba as 

(3) 

Here va =PalM, Vb = Pb/M are the nucleon ve­
locities of the initial and final state in the c.m.s.; 
y' and y denote the totality of spin-charge vari­
ables of the nucleons, corresponding to states a 
and b. We calculate the quantity Wy'y ( R, Va, Vb) 
in the approximation linear in v and with neglect 
of terms from meson recoil of the type u2/M. 
Here, as we shall show below, we can set va = Vb 
= v in the integrand in Eq. (3); i.e., in the calcula­
tion of Wy'y• the nucleon velocity can be consid­
ered as a parameter. The desired potential 
W ( R, v), which depends on the velocity, is then 
determined by the formula 

{/.y·, W (R, v) ·I.Y) = W-r'y(R, v, v), (3a) 

where Xy' and Xy are the spin-charge functions 
for the two-nucleon system in the phenomenologi­
cal treatment. In other words, the potential calcu­
lated in our approximation ( linear approximation 
with respect to velocity, and neglect of the term 
u2/M) is, in essence, a potential between nucleons 
surrounded by meson clouds and moving with con­
stant velocities v and -v. We calculate this po­
tential, discarding terms which fall off as exp (- 3R) 
and faster. 

A consistent procedure of calculation of 
W ( R, v) should start from a relativistic equation 
for the scattering amplitude. But no relativistic 
theory of the 1r-N interaction exists, and, there­
fore, we choose another way for the construction 
of W, based on the success of the static-meson 
theory in the low-energy range. Since the renor­
malized constants are quadratic in velocity, the 
renormalization will be carried out automatically 
in the linear approximation, if the meson cloud of 
the nucleon, described by the functional F, has 
the same character as in the static case. This 
situation makes it possible· to base the approxima­
tion, linear with respect to velocity, on the solution 
of the static problem for the nucleon. The func­
tional F av ( i) for the i-th nucleon, moving with 
velocity v, can be obtained from the functional 
for the fixed nucleon F ao ( i ) by transition to a 
moving system of reference (a represents all of 
the quantum numbers of the nucleon aside from the 
velocity v ) . 

In changing to the moving system, we make a 
Galilean transformation of the state vector of the 
dressed nucleon. The functional F av ( i) has the 
form 

Fa.v (i) =' exp [i (p -- u)• r;]f irxv), (4) 

where iav does not depend on ri, and the one­
nucleon Hamiltonian 

ll;v (0) = {- (v.u) +II,+ Ui (0)} (5) 
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differs from the static Hamiltonian Hio ( 0) == H7r + 
Ui ( 0) by the substitution of Wk in H1r by Wk -
( v • k). Thus, we have 

H iv (0) I ir.w ) = 0 • (6) 

We note that in so far as the Hamiltonian for the 
·fixed nucleon Hio ( 0) does not contain recoil terms 
of the type u2/M, these terms are not in the Hamil­
tonian (5). Thus, the term u2/M in the Hamiltonian 
(2) will also be omitted. 

With the aid of the formulae (4), (5), and (6) for 
the one-nucleon function F av. we can write the 
explicit form of the vector <I> which enters into 
Eq. (1) [see I(8) 1: 

"" z-•;, "\;1 c" '>'a= aa L.J a.:fa.,a(J,a+)F~.-r (2,a+)A 0 
ct:~ a (7) 
= Z;~1'eiJa'R !av), 

where the velocities of nucleons 1 and 2 have been 
set equal to Va and -Va, respectively. Here 

Zva (R) = (bvv I ava) (8) 

normalizes the amplitude <I>a to unity (In all ma­
trix elements of the type (bv I L I av), the integra­
tion over R is not carried out. ) . 

2. We shall show that, in the approximation 
linear with respect to v and with neglect of recoil 
terms of the type u2/M, we can set Va == Vb in 
Wy'y ( R, Va, Vb) [see Eq. (3)1. To do this, we 
investigate the dependence of Wy'y ( R, Va, Vb) on 
Va and Vb· We represent Wy'y ( R, Va, Vb) in the 
form 

W y'y = s d3keik.·Rw~'y (k, Va, Vb) 

+ S d3qd3kei <~<+q)•R w~'Y (k,q, Va,Vb), 

where w' and w" correspond to the potentials 
which fall off as exp ( - R) and exp ( - 2R) re­
spectively. 

(9) 

Since the entire dependence of w' and w" on 
Va and Vb occurs through the one-nucleon matrix 
elements of the type 

(1X'Vv I V k [ocva) ; (oc'vu I ak locva) ; 
{oc'vv I akaq Jocva); (oc'vb I Vkaq locva), (10) 

we should first elucidate the way in which the quan­
tities (10) depend upon Va and Vb· Here we em­
ploy the formulae 

akFo.v = -- [Hv + wk (v)r1V% exp (- ik·r) Fo.v, 

akaqF o.v === exp [- i (k + q) · r) [H v + wq (v) + wk (v)r1 

wq (± v) = IJJ,f = (l)q + (q·v), (11) 

which go over into the well-known relations of the 
static theory for v == 0. Using Eqs. (11), the ma­
trix elements (10) can be expressed through matrix 

elements of the form 

(o:'vb I Vq H v (0)! wq (v) ... Hv (0) ~ wq, (v) •.. Vq• I O:Va)' (12) 

containing the product of operators V and 
[ Hv ( 0) + w (v) 1-t in various orders. Here the 
v without a suffix in Eq. (12) is equal to one of the 
vectors Va, vb. Using the unitary inversion oper­
ator I of the pseudoscalar meson field9 

I { iTO\,l(+ +) } = exp - T L.J aq - a_q (aq + a_q) , 
q 

we find 

IH 0 (0)f,.=H 0 (0); fur= -u; 

I Hv (0) J+ = H_v (0). 
In addition 

floc, v ) = joc, - v ) , 

(13) 

(14) 

(15) 

(16) 

since the state a, ± v relates, for fixed velocity v, 
to the lowest eigenvalue of H±v ( 0 ), which is non­
degenerate (not considerip.g the degeneracy with 
respect to a). With Eqs. (14), (15), and (16) we 
can obtain the following relations for (12). 

(ll.'Vb I r I Vq II,, (0)! wq (v) .•• H,, (OJ! "'q' (u) ... Vq.J+llocva) 

(17) 

If follows from Eq. (1 7) that the matrix element 
(12) does not change if v is changed to -v through­
out, except in w (v). Consequently, the entire rna-· 
trix element (12) depends on Va and Vb only 
through v~, vt and ( Va Vb ) , aside from the de­
pendence through w (v ). Therefore, in the approx­
imation linear in velocity, we can set Va == Vb == 0 
everywhere in Eq. (12) except in w (v ). From this 
it follows that the dependence of the quantities (12) 
and, through them, also w' and w", is completely 
through w (v ), i.e., through scalar products 
( v a • k ) , ( Vb · q ) etc . 

As can be seen from Eqs. (3) and (7), the multi­
plication of W ( R, Va, Vb) by ( Va- Vb) is equiva­
lent to multiplication of the Fourier transforms w' 
and w" by -k/M and -(k+q)/M, respectively. 
Therefore, terms (Va -Vb, q) and (Va -Vb, k) 
in w' and w" are equivalent to terms - k2/M 
and - (k+q, k)/M, which are characteristic of 
the meson recoil of type u2/M. Consequently, if 
we neglect the quadratic recoil terms u2 /M, we 
can set Va == Vb in t_?.e potential W (R, Va, Vb ). 

3. Starting from Eq. (1), we introduce formulae 
for the potential W ( R, v). The first term in Eq. 
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(1) pertains to a number of matrix elements, meth­
ods of calculation of which were considered in I. 
In this case, additional terms arise because of the 
factor Z, which was not taken into account in the 
derivation of 1(20). With this in mind, we find as 
we go from Eq. 1(20) to separate coordinates for 
the meson clouds, that with the choice of the func­
tional ~a and ~b in the form Eq. (7) (and in our 
approximation), the term (~b. ( l:I- Ea) ~a) leads 
to the potential wi with matrix elements 

w; . ., = <bv I (1 +N) lUi+) (a2) + U:i(al)IJ av> (ZaaZbb)-'1• 

+ i (V•V' Zaa) Zab (Zbbz:a)-'1•; (18) 

Zab=(avJ(l +N)Jbv). 

Here and throughout I av > denotes the two-nucleon 
state vector with separate coordinates: 

I av> = ~ c~~e-iPa'RFexv(l' at) F~. -v (2, at) Ao 
ex~ 

=~C~~e-iPa'Re-l(u,-u,)•R/2Jl, 1XV)J2, ~ -v), (19) 
ex~ . 

where the functional of the i-th nucleon I iav >, 
defined by Eqs. (4) and (6), depends only on the 

operators at; ui = L) qatqaiq. 
q 

To obtain the potential of order exp (- 2R ), it 
is necessary to insert i.q.to the term (v • 'VZ) in 
Eq. (18) the first two terms of the expansion 1(22) 
for the operator N: 

In the calculation of the first term in Eq. (18), the 
first term in Eq. (20) is sufficient. 

We transform the second term of Eq: (1). We 
introduce the notation 

r a= (H- Ea) <Da. (21) 

As shown above, r falls off as exp (- R }. There­
fore, the second term in Eq. (1) in which r occurs 
twice, can be written in the following form: 

(22} 

- ~ (fb\<Dc}(Ec-Ea-isf1 (<Dc/fa}• 
c . 

Pc= 0 

Here we have substituted the vector ~c for 1/J~~), 
~ince the terms discarded here lead to a potential 

exp ( -3R}. 
We adopt the convention that the double line in 

the functional 

1\ G (a1, a2, at, at) A0) 

means that we should first c·a"J.ciulate the expression 
GA0 to the right of the double line, that is, we 
should first free it from all annihilation operators 
at> a2, moving them to the right to the vacuum A 0, 

taking account of commutation relations, and then 
set at= at= a+. 

For transformation of the first term in Eq. (22), 
it is convenient to use Eq. (11) to represent r a in 
the form r a = II r a ( at, a! } A0 ), where 

M (k, V 1 R) = et1<•R {- (v• k) Zaa (k) 

g = exp {i [ 02 ~ u, + Pa + k ]·R}; Zaa(R)_ = t eik•RZaa(k) • 

The quantity ( H- Ea)-1 ra in Eq. (22) can .be 
transformed in the following way: 

[Hn + U1 + U2- Eal-1 llf a) 

=II [fl1o +H2o- Ear1ra (a;, a;) Ao) 

-[fir:+ U1 + U2 - Eal-1 /l (U;+l (a2) + U~+) (a1)) 

X [H1o + H2o- Ear1 r a (a{, al) A0); (24) 

H;v = Hn (a;, ai) + U, (a7, a1)- (v•u;). 

The second term on the ~ight-hand side falls off as 
exp (- 2R) and can be discarded. With the aid of 
Eq. (24), the following expression for the potential 
corresponding to the first term in Eq. (22) is ob­
tained 

2.; <bv I rui-) (at)+ u~-) (ai) 
k 

+2E(p+k)-2E(p)-isr1 M(k, v, R))av), 

vk = k( M .. (25) 

Integrating over the second term in Eq. (22), we 
find the following expression for the potential cor­
responding to this term 

(-) + (-) + . I~ >< k A 'l\l(bv)[U 1 (a2 )+U2 (a1 )-t(v,'VZbb)[c,v+;w v+;w.cJM(k,v,R)Jau) 
(26) f.c 2£(k+p)-2E(p)-ie 
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where the label c in Eq. (26) denotes summation 
only over spin-charge indices of the two-nucleon 
state. Unifying Eqs. (25) and (26), we find the 
potential W II to be 

- W~~y(R, v) 

= );(b, vi rui-l (ai) + u~-l (ai)- i (v, V'Zbb)] (27) ...... 
k 

X (1- Po) M (k, v, R) I av), 

where P 0 is the projection operator on the ground 
state of the Hamiltonian H1, v+vk + H2, -v-vk (not 
containing real mesons). In Eq. (27) we have set 
E (p+k) - E (p) ~ (k·v). Neglecting, as earlier, 
terms of the type u2/M, one can take k = 0 in the 
operators H1o H2 and P 0 in Eq. (27). Terms with 
(V • Y'Zaa) and ( v • Y'Zbb) do not then contribute 
to Eq. (27). 

The total potential is the sum of wi and wii 
[ Eqs. (18) and (27)]. Direct calculation from Eqs. 
(18) and (27) leads, in general, to a complicated 
dependence on velocity. In the approximation linear 
in the velocity, which we consider, the only parts 
which are meaningful are W st (static potential) 
and the part W LS• which is linear in velocity, of 
the sum w (R, v) = wi + wii: 

W st = W (R, 0); W LS = (v, [V' vW (R, v)]v=o)· (28) 

THE POTENTIAL 

In Eqs. (18) and (27) for the potential, the meson 
variables relating to the clouds of nucleons 1 and 2 
are completely separated, so that the calculation of 
(18) and (27) reduces to the calculation of one-nu­
cleon matrix elements. Here, as follows from the 
form of Hiv and the discussion in connection with 
Eq. (17), in the approximation linear in the velocity, 
the one-nucleon matrix elements differ from the 
static matrix elements only in the substitution of 
Wk by Wk ± ( k • v) in the energy denominators, 
so that the results of the static theory can be used 
for their calculation. We calculated these matrix 
elements, which have the form (12) for va = Vb, 
using an expansion in terms of the system of func­
tions of the one-nucleon Hamiltonian. Because of 
this, the two-nucleon potential turned out to be con­
nected with the 1r-N scattering, as in the static 
case.3- 5 In summing over the intermediate states, 
the following formula3 was employed: 

- '-J (2J __L I )-I p<il (2/) p(i) (2J) 4 kq L.J I kq kq ( )'/, 
())k(jjq 

I.J 

(29) 

where a2I 2J is the total cross section for 1r-N 
scattering\n the state with isotopic spin I and 
angular momentum J; P ( 2I) and F ( 2J) are 
projection operators on the state of isotopic spin 
I and angular momentum J (matrix elements 
Pkq = ( k I P I q) and Fkq = ( k I F I q) in the nota­
tion of reference 3); G ( Hi) is some function of 
the one-nucleon Hamiltonian Hi. In Eq. (29) for 
Wll, the function G depends both on H1 and H2. 
In this case, the result of applying Eq. (29) to the 
calculation of matrix elements between states of 
the first nucleon [first part of Eq. (29)] will be 
functions of the Hamiltonian of the second nucleon. 
This function G ( H2) should be considered the 
starting point for the application of Eq. (29) to 
summation over the states of the second nucleon. 

We shall not dwell on the details of the calcu­
lation, in view of the analogy with the calculation 
of the potential in the static case. 5 Since the in­
fluence of the factor Z is of interest, we first 
give the result for Zab "' Dab. and then indicate 
the change introduced by Zab >" Oab· Calculation 
in this case gives the following expression for the 
operator W ( R, v) from which - according to 
Eq. (28) - both the static part W st of the poten­
tial and the part depending on the velocity, W LS· 
can be obtained 

'J\7 {R, v) = W~1> (R, v) + W~2l (R, v) 

+ Wao(R, v) + Wacr(R, v). (30) 

The first term in Eq. (30), which falls off as 
exp(-R), comes from the term <bvl [uf+>(a2) + 
u~+)(ad] I av> in Eq. (18): 

w~l) = -2(27tt3 ~d3keik·Rvi;;v2k/w;-. (31) 

The remaining part W ( R, v) falls off as exp (- 2R). 
It can be conveniently expressed through the func­
tions h1o h2 and h3: 

(32) 
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(33) 

(34) 

Here the terms in the operators W~2), W ao , W aa 
which contain h1 and h2 come from the term 
<bv IN [ u~+)( a2) + u~+)( at) ll av > in Eq. (18), and 
the terms with h3 come from the operator wn. 
The operator W~2 ), which does not depend on the 
n-N scattering cross section, is of the form 

W~2> =- (21tf6 ~ d3qd3ke'<k+q)'R{VlqVlkV2qV2khl (0, 0) 

+ V1qV1kY2k¥2qh2 (0, 0)}. <35) 

This operator leads to a potential of fourth order 
in perturbation theory. The operators W ao and 
W aa depend on the cross section a21,2J for n-N 

scattering. W ao is linear in a2I,2J: 

X {PW (2/) F~~ (2J) vi;;v2k [hl (wt, 0) + ha (wt. 0)] 

+ vt v lkp~~ (2/) F~~ (2J) [hr(O, Wt) + ha (0, Wt)l 

+ P~~ (2/) F~~ (2J) vi;,V2qh2 (wt, 0) 

+ v;WlkP/,~(2I)Fi2J(2J)h2(0, wt)}. (36) 

The operator W aa depends quadratically on the 
cross section a2I,2J: 

Waa= -16(21tt6 ~ (2J + lfl(2J' + lp 
l,l',J,J' 

x {PW (2/) F~d (2J) P~d (2/') F~~ (2J')[h1 ( wt, ws) + ha ( wt, ws) l 

+ P~~ (2/) FW (2J) P~~ (2/') Fk~ (2J') h2 ( Wt, Ws)}. (37) 

In Eqs. (31) to (37), the dependence on the veloci­
ties enters only through the quantities w± in the 

denominators of the functions ht. h2 -and h3• The 
potential W st calculated from Eqs. (30) to (37) 
coincides with the potential obtained by Klein and 
McCormick.3 

We consider the dependence of the integrands on 
the velocity and on the vectors k, q and a, keep­
ing the terms of the operator W (R, v) [ Eq. (30)} 
which are linear in velocity. These vectors occur 
here only in the combinations 

(k + q, v) (k·q)2 , (k + q, v) (al'[kxq]) (a2.[kxq]), (38) 

(k· v) (k·q) (S [kx ql), (q·v) (k· q) (S1·[kxq]), . (39) 

(asidefrom exp[i(k_+q)•R}), where S=a1+a2. 
The combinations (38) and (39) come from the sym­
metric and antisymmetric terms (relative to k 
and q) entering into the part of the function hi 
which is linear in velocity. Only the terms with 
the combinations (39) lead to our LS type potential, 
after integration over angles. This potential falls 
off as exp ( - 2R ) . Terms of the type ( k + q) • v 
in the potential exp ( - 2R ) and of the type ( k • v ) 
in the potential exp ( - R) correspond in the more 
exact treatment to an expansion of the differences 
of kinetic energies, E (p)- E (p+k+q) or E (p) 
- E (p+k) in the denominators. But, as Levy 
showed, 7 terms involving the difference in kinetic 
energies of the initial and final states do not con­
tribute to the scattering, so that terms of this char­
acter can be discarded. 

We now consider the influence of the factor 
Zab "" Oab on the potential. After taking this fac­
tor into account, the result calculated for the poten­
tial differs from the potential (30) in the following 
ways.* 

1. The potential W st coincides in this case with 
the potential calculated by Miyazawa and one of the 
authors5t and differs from the potential of refer­
ence 3 by a factor Z -t. 

2. No part linear in the velocity will occur in 
the operator w~t). 

3. In the terms linear in the velocity in the func­
tions hi [ Eqs. (32) to (34) l, parts symmetric in the 

*It is convenient to choose the states a and b such that 
z<•> = z<•> o where z<•> comes from the first term in Eq. (20). ab aa ab' 

tin reference 5 the term Wa-a- (R, 0) was not calculated and 
the elastic, rather than total, cross section was considered. 
We note the following misprints and inaccuracies in reference 
5: in Eq. (39), the square bracket in the last term should come 
before the round one, that is, the expression should be: 

(1:1 1:2 -1) [2(k·k')2 -(ui·[kxk'] (u2 ·[kx k'])] (2k,q. + 2~ + k,~)l. 

Further, in Eq. (44) a factor exp(iq·R) was left out before the 
group of terms beginning with 71. (u,·k') (o-2 ·k)(k·k'). These 
terms lead to a potential of the type exp(- 3R). 
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variables q and k will not be present, except for 
the symmetric part of the term resulting from taking 
into account the 2 ( k · v) in the first factor of Eq. 
(34). The antisymmetrical part here will be un­
changed. 

Thus, when one takes into account Zab "' Oab• 
all terms with ( k + q) · v and ( k · v) disappear 
from the potential W ( R, v), with the exception 

(LS) I 
W LS = MRS {Woo 1 Woo+ Waa}, 

Here we have introduced the following notation 

noted above, whereas the terms with LS are un­
changed. In other words, normalization of the 
asymptotic functions does not change the potential 
w LS.- In both cases the potential w LS- depends. 
on the velocity only through ( L S), as it should. 

If we retain only the largest cross section a33 

out of all the cross sections a2I, 2J, then we ob­
tain the following expression for the potential W LS= 

(40) 

(<Jls + ~q)2 (<Jlt + <Jlk) + (<Jlt + <Jlq)2 (<Jls + <Jlk) 

Al (k, q, t, s) = <(Jls + <Jlq)" <(Jlt + <Jlq)2 (<Jlk + wq) (<Jlt + <Jlk) (ws + wi<) ' 

The term w00 in Eq. (40), which is proportional 
to f4, would be a potential of 4th order in perturba­
tion theory. 2 It is well known that the sign of this 
term is opposite to that necessary to explain the 
experimental data.1 The terms Wao and waa de­
pend on the total cross section for 1r-N scattering. 
From the form of the expression for W LS and the 
asymptotic expansion (see below) one might think 
that the sum w ao + w aa i;:; of the same order of 
magnitude as w00 • In view of the complexity of 
Eqs. (40), the sign of the sum for R ~ 1 can be 
determined only through numerical integration. In 
calculating the potential WLs. one should keep in 
mind the fact that it is necessary to introduce a cut 
off factor (nuclear form-factor) into the calcula­
tion of the potential W LS; otherwise, the calcula­
tion within the framework of static meson theory 
is meaningless. Then it is clear that_one can con­
sider the potential W LS to be satisfactory only for 
such distances R that the influence of the cut off 
is small. In the case of the static potential this 
region is R ~ 0.4, where the potentials of order 
e-R and e-2R are of main importance. One might 
hope that the LS potential, which falls off as e - 2R 
will also depend weakly on the cut off in this region. 

ASYMPTOTIC EXPANSION FOR WLs 

In Eq. (40) for the LS -potential, asymptotic in­
tegration over q and k can be carried out by de­
forming the contour of integration to a contour C, 
starting from +ioo, going around the point i, and 
returning to + i oo (both in the integration over q 
and over k). In addition, poles should be taken into 
account. 

As a result, an asymptotic series in inverse in­
tegral and half-integral powers of R, with a com­
mon multiplier e-2R/R3, is obtained. Here the 
series for w00 contains only inverse integral pow­
ers of R and begins with a constant term. Series 
in inverse integral and half-integral powers of R 
are obtained for w ao and w Q"O"• with the series 
for Wao beginning with R-1/ 2 , and the series 
for w aa with R - 3j2. The coefficients of these 
terms can be expressed in terms of integrals of 
the form 

00 

L = ~ """ (p) dp 1 2 3 n n+l ' n = ' , ... ' 
o wp 

(41) 

which can easily be calculated from the experimen­
tal values of the cross section a33 • 
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In this way we calculated the expansion up to 
terms of R-6 in the expressions for w00 , Wuo 

and Wuu· In view of the complexity of these ex­
pansions, we give here only the asymptotic series 
up to terms in R-3/l. They are 

f' -2R {3 2 ( I 2)(1 + 15 R-I)l Woo=2(2")se - '1:'1: -4- f' 

The coefficients Ln which enter into these formu­
lae were calculated from the data of reference 10. 
The cross section for elastic scattering was used 
for the cross section u33 • The numerical values 
of these coefficients were 

L1 = 3.2, L2 = 1,8, L3 = 1.0. 

From Eqs. (42) it can be seen that the main 
term at large distances is w00• It is well known that 
sometimes the asymptotic expressions are good 
approximations up to R ~ 1. If we assume that 
this is so in our case, then in the region R ~ 1, 
the terms w00 and Wuo will be of the same order 
of magnitude, and Wuu. an order of magnitude 
smaller. 

We note that the expressions obtained for the 

potential W LS, together with the static potential 
Wst found earlier, permit one, for the first time, 
to judge the extent of validity of the nonrelativistic 
meson theory for the N-N scattering in the low­
energy region. 

We thank Acad. V. A. Fock for valuable advice 
concerning the problem of the asymptotic expansion 
of the potential. 
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