
SOVIET PHYSICS JETP VOLUME 36 (9), NUMBER 1 JULY, 1959 

DUAL SCATTERING OF RELATIVISTIC PIONS BY NUCLEONS 

V. A. ASTAF' EV 

Institute of Nuclear Physics, Moscow State University 

Submitted to JETP editor May 9, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 98-107 (January, 1959) 

The formalism of the dual scattering theory based on invariance of the interaction Hamil­
tonian under rotations in isotopic and x space is extended to relativistic energies. The 
expression for the differential cross section is obtained in a form which is convenient for 
analysis of the experimental data. To illustrate the application of the formal theory, the 
problem is considered in the approximation of radiation damping theory. 

INTRODUCTION 

THE production of pions in low-energy meson­
nucleon collisions ("dual scattering" of pions ) 
has been considered in a dissertation by d'Espagnat1 

and in a number of other papers.2- 4 The theory de­
veloped in these papers is subject to a number of 
formal limitations: (1) In deriving the equations 
for the scattering matrix T it is assumed that 
dual scattering is much less significant than single­
meson scattering.* (2) Nucleon recoil is neglected, 
thus leading to the use of an approximate density 
function p ( 1, 2) of the final states which is inde­
pendent of angular variables, with the result that 
the angular distribution of scattered mesons is dis­
torted at high energies. (3) The differential cross 
section is derived1 on the assumption that only s 
and p waves are important in the scattering. 

It is the purpose of the present paper to exam­
ine the formalism of the dual scattering theory at 
relativistic energies. Racah's procedure enables 
us to derive a formula for the differential cross 
section which is valid at any energy and can be used 
conveniently to analyze the experimental angular 
and momentum distributions of scattered pions 
(Sec. 3A). The scattering theory establishes an 
equation that relates the matrix T to the reaction 
matrix K. In Sections 1 and 2 this equation is 
studied for moderate relativistic energies, when 
effects associated with ternary scattering and the 
production of "new" particles are still small but 
the nucleon must be regarded as a relativistic 
particle. 

The formalism that is developed is used for a 

*We here exclude the nonrigorous procedure based on the 
assumfltion that the dual scattering matrix can be represented by 
the product of a function depending on the energy of the incident 
meson and a function of the energy of the scattered mesons. 1 
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solution of the problem in the approximation of the 
radiation damping theory (Sec. 3B ). Although the 
damping theory cannot account for experimental 
scattering results5 at low energies of the incident 
meson in the laboratory system Tkin « M (nucleon 
rest mass), the results of this section may be of in­
terest in explaining the role of damping at energies 
comparable with or greater than M. 

1. K AND T MATRICES IN DUAL SCATTERING 

Lippman and Schwinger6 and Goldberger7 have 
shown that an exact statement of the scattering 
problem leads to a set of two equations in the ma­
trix T and reaction matrix K. The first is deter­
mined on a constant-energy surface while the sec­
ond is determined both on and outside of a constant­
energy surface: 

K~'" = H ~a+ P.~ H ~,Kya / (Ea- Ey), (1) 
y 

Here H,aa = ( <P .B• H <Pa) is the matrix element of 
the interaction Hamiltonian for the transition be­
tween states a and .B (following reference 7, we 
use the indices b, c for states with Eb = Ea and 
.B, y for E,a ;e Ea) and P in (1) indicates that the 
principal value of the integral is taken. 

The probability of a transition from state a to 
state b is related to the matrix Tba very simply 
as follows: 6 

(3) 

where p ( Eb) is the density of states.* 
Let us now consider dual scattering of a pion by 

a nucleon. In the center-of-mass system a meson 
with energy Wi and momentum ki = Kini (ni is 

*We use a system of units in which m71 = c =11 = 1. 



DUAL SCATTERING OF RELATIVISTIC PIONS BY NUCLEONS 71 

the unit vector of direction), the isotopic state of 
which will be denoted by a ( a = +, -, 0 ) , collides 
with a nucleon (energy Ei. momentum Pi. spin 
Si and isotopic spin ti ). In the final state we have 
a nucleon (Ef, Pf, Sf, tf) and two mesons (W1, 

kto {3) and (W2, ~. y). 
It is known that the solution of (1) is difficult 

and requires a number of field approximations. We 
confine ourselves to (2) and use (1) only to estab­
lish the general form of the reaction matrix K. The 
interaction operator of the nucleon and meson fields 
will be the Hamiltonian of symmetric pseudoscalar 
theory, 

(4) 

where '11 is the nucleon field operator, q; is the 
meson field operator, T is the nucleon isotopic 
spin vector, y 5 = {3y1yy3 and y 5 = ( {3 ak, {3). H ( x) 
is invariant under rotations and reflections in x 
space and under rotations in isotopic spin space. 

Let Qi denote the set of variables that charac­
terize the initial (nucleon-meson) state and let 
Qf denote the variables of the final (nucleon-
2 meson) state. When isotopic spin is excluded 
the corresponding sets of variables will be denoted 
by Wi and Wf. 

From the definition of the center-of-mass sys­
tem, 

(5) 

the nucleon momenta Pi and Pf can be expressed 
in terms of the meson momenta ki and kto k2• We 
then have 

(6) 

where Ki, Kto K2 are related by energy conserva­
tion as follows: 

(7) 

= (M2 + x~ + x; + 2x1x2 {n1•nJ)'1' + (1 + xi)'h + (1 + x~)'1•. 
The matrix K in isotopic and momentum space 

is determined through its representation by an iter­
ation series [see Eq. (1)]. It is easily shown from 
a study of the general term of this series that for 
interaction (4) the matrix element of K on a con­
stant-energy surface is 

<Dtl K jD,) =<ttl "t'tt't<XKl + ~j--:{'t<XK" -1- -:{"=y-:JK~ 

where T a are related to the Cartesian components 
of T by 

"0- "Z1 (9) 

and each of the Kj (j = 1, 2, ... 6) can be repre-

sented by a linear combination of the pseudoscalars 
(a·nt), (a·n2 ), (a·ni) and i(n1 xn2 ·ni)7J 
(where 7J is the unit matrix) with coefficients that 
are invariant functions of n1, n2, ni and K1o K2, K3• 

Expressing K2 of (7) as a function of K1, E and 
cos 912 = n1 • n2 and expanding these coefficients in 
series of the Legendre polynomials PA,1 (n1 ·n2 ), 

PA,2 (n2 ·ni) and PA,(n1 ·n2), weobtainfor Kj: 

(wt i Ki i w;) = {Ao + BoP1 (nJ·n,) + CoPl (nt•ntl 

(10) 

+ {symm. terms 1 ~2} +{A+· .. } i ([n1x n2]•ni) (·~)Is 1s1 , 

where A0, B0, ••• depend only on Ki; K1• 

The complete matrix < Qf I K I Qi > must of 
course be symmetric with respect to the inter­
change of all variables of the emitted mesons, 
1 ~ 2 (pions are bosons). 

For not too high energies ( Tkin < 1.5 Bev) we 
can in (2) neglect ternary scattering and the produc­
tion of "new" particles. For dual scattering T is 
then determined from a system of equations written 
schematically as follows: 

-i-r=~p(1')(1 1 , 2riKi1';<'1'1Tj1,) 
1' 

- i-r= ~p(2') <2r 1 Kl2'> <lr. 2' ITI1;) 
2' 

- i-r=~p(1')<1riKI1';(1',2riTII,) 
l' 

- irr ~ p (1', 2') (1r, 2r I K II', 2') (1', 2' IT! 1,); 
1', 2' 

(11) 

(1 f! T J1,) = (1[ I K 11,) - i;: ~ p ( 1') (If! K I 1') (I I iT 11,) 
1' 

-irt ~ p(1', 2')(1t1Ki1', 2')(1', 2'iTi 1,). 
1', 2' 

Here < 1 f, 2f I T 11 f > is the matrix of dual scat­
tering and < 1f I T l1i > is the matrix of single­
meson scattering. Then density functions p ( 1) 
and p ( 1, 2) are obtained from 6 functions by 
integrating over the energy. The term 

X1 = ~P (2') (2r 1 K i 2'> (1 1, 2'1 T i 1,), 
2' 

for example, describes rescattering of one of the 
two scattered mesons (meson "2") in another di-
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rection (with observation of the conservation laws). Here 
The matrices <1f I K l1i> and <1f, 2f I K 11', 2' > gJ. ILJ ( > "cl!LJ I s,, fit == .4J 1'/,; ms1 y tm(n;), (16) 
are given similarly by (8) and (10). 

2. K AND T MATRICES IN THE TOTAL MO­
MENTS REPRESENTATION 

The state of our system is described by the fol­
lowing quantum numbers: The total isotopic spin I, 
its projection MI, the total angular momentum J, 
its projection Jl.J, and parity ~- In addition, the 
initial state is characterized by the orbital angular 
momentum 1 and the final state by the total L 
and partial 1to 12 orbital moments as well as by 
the isotopic spin A of the two-meson system (the 
isotopic spin of a meson is 1). Since the interac­
tion Hamiltonian is invariant under rotations and 
reflections K has the following diagonal form in 
the representation based on eigenstates of total 
isotopic spin and total angular momentum: 

(1' M~A; J'[L~L Uil2)~'1 K II Ml; J[LJld 
(12) 

==KIA 0 0 0 8 
1/L(I,I,) !J' JJ M IM~ ILJILJ'O~~'o 

where 11 + 12 - 1 is odd (because of the pseudo­
scalar pion wave function). We have the following 
orthogonal transformation to the total isotopic spin 
representation:* 

1='1• I+'l• 
- ~ ~ CIMJ CAM . /A IM 
- .4J A'/,; Mit 11; ~y (Wt/ K I w,) cl / a.l· (13) 

1='1• A=l-'11 '' t' 

For the matrix < Qf I K I Qi > in the form ( 8) we 
have 

(wtl K I w,)'f•; 2 ==- VIO (wt I Ka + K41 w,), 

(w, I K I w,)'"; 1 == y2 (wt 12 (K6- K6 ) + Ks- K4 1 w,), 

(wt I K I w,)'/,; 1 == V2 (wt 13 (K2- K1) 

+ Ka--K, + Ko- Ko fw;), (14) 

(wt I K i w,)''•; 0 = (wt 13 (K1 + K2 + Ko + K6)-Ks- K,l w,), 

We now expand the matrix ( Wf I KIWi )IA for arbi­
trary I and A in eigenfunctions of the total angu­
lar momentum: 

J+'/, 

( Wt I K I w;)' A == " " ~ K1 A ( ) .4J £.) £.J J IL(l111) "1• ><t 
J l, L=J-'1• I 1,+1, I =L 

~OJ, ILJ J, ILJ+ 
X ~ L(l,t,) (s,, n~o n2) g z (s;; n;). (15) 

ILJ 

. *Here and hereinafter cZ: af3 are Clebsch-Gordan coeffi­
cients, W(abcd; ef) are Racah coefficients, Z(abcd; ef) are the 

(abe) coefficients used in reference 8 and U c d e' are generalized 
f f' g 

Racah coefficients. 9 

m 

are orthogonal and normalized functions of the 
nucleon-meson system and of the nucleon-2 meson 
system; respectively; Y1m (n) is the usual spher­
ical function. 

When the matrix ( Wf I KIWi )IA is given by (10) 
its matrix elements in the J, Jl.J representation, 

K~1L(11 12 )(Kto Ki), will be linear combinations of 

Ao, Bo, ... etc. The expansions (13) and (15) also 
apply to the T matrix. 

In order to obtain a set of equations relating T 
and K that are reduced with respect to total iso­
topic spin and total angular momentum we repre­
sent all matrices in (11) as expansions in functions 
of the total moments. When expanding the matrices 
< 2f I K I 2'> that are in the X terms it must be 
taken into account that because of energy and mo­
mentum conservation these matrices will also de­
pend on the momentum of meson 1f, so that is 
more convenient to expand them in momentum space 
"on the left" in functions of the nucleon-2meson 
system. 

For elastic scattering K = Ki> whence the density 
function of nucleon-meson states becomes 

p (1) == Pl (K,) == KtW; (E- W;) I (2'lt)3 E. (18) 

From (7) the density function of nucleon-2meson 
states is 

p (1, 2) = p2 ()(I> cos 612) 

)(i)(2w 2 (E - w 1 - w 2) 

== (27t)" E- W 1 + (W 2 I x2) K1 cos 612 ' 
(19) 

where the angle 012 is related to the emission 
angles ..9-to ifJ1 and J-2, cp2 of the scattered pions 
by 

At relativistic energies the dependence of p ( 1, 2) 
on cos 012 becomes significant and co:Qlplicates 
the reduction because, when integrating over angles, 
in termE' containing p ( 1, 2 ) we cannot directly 
make lise of the orthogonality of the functions 

Y ~(l112) ( n1 • n2 ) . 

The separation of isotopic, angular and spin 
variables results in the following system of linear 
algebraic integral equations: 
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-iTC{symm. terms. 1 ~2} ( 21) 

I I . I I ) T Jl (K;) = Kn (K;)- l1tp1 (x;) KJt (x;) T Jt (x; 

' xl max 
. ~ c ,~ ' /;\' ' 1!1.' ' 

-l7t .L.J j dK1 p2(x1)l(JL'(/t')l (x;,K1)TJIL'u' /)(x1,x;). 
i\.',L',... 0 1 2. 1 2 

The summation in (21) is taken over all primed 
indices. We have here the coefficient 

~/A I').\'= (21" + 1) V(2A + 1) (2A'+ I) 

X w (1 PM;Al") w (I JIM; A'!"). (22) 

P1 ( K1) and P2 ( Kt) are abbreviations for 

~ (x1 ) = ~ A1, ~ d cos U12p1 (x~> cos &12,) Pi. (cos &12, ), 

), (23) 

~ (x~) = ~ Bi. ~ d cos &1'2' p2 (x~, cos 61'z') Pi. (cos &1,2,), (24) 
i. 

where 

/II() 

X (2J" + 1) (2}.. + 1 f' C1,z\ oo W (LJ L" J"; + r) 
x \f1 (L' J l" J" · 2_ r) Z (l L( L" · l r) Z (z' L') l" · ( r) (25) '2 11 '2 1 't2t 

where +I 
r 

3. DUAL SCATTERING CROSS SECTIONS 

A. General Relations 

Using (3), (13) and (19), we can represent the 
differential cross section for dual scattering by 

dcr (tr; ~. y [ t;, ~) = ~ ~ 11~~~;;/i~dcrl'.\'; 1'\ . (27) 
/'A'/,~'\ 

where the coefficient ~~~ ;Jfr contains the 

charge character of the process (see reference 
10, for example) and 

(28) 

Here dU1 = sin .J1 d.J1 dcp1 and dU2 = sin .J2 d.J2 dcp2 

are the solid angles of pion scattering and v is the 
velocity of the incident meson. In (28) we assume 
that ( Wf I T I Wi) is represented by the expansion 
(15) with the functions g and G given by (16) and 
(17). 

In the coordinate system where the polar axis 
has the direction of incident meson momentum, 

Following Racah, 8•9•11 we can obtain an equation 
fo:r: the differential cross section that is directly 
comparable with experiment. Integration of 
dai' A'; IA in (28) over the azimuthal angles <P1 and 
cp2, followed by rather complicated transformations 
gives* 

(29) 

P-. (x1 ) = J P-.J (x1 , cos 612) P-. (cos 612) d cos 812 , (30) 
-1 

X D ( I) Z~+z:+L,+Lz-L-i. l+L 1, L 
L,L,;i,=-. " . i ,--'(21,+I)V(2J'+1)(2L'+1)(2l~+1)(2l~+1)(2J+l)(2L+l)(2ll+l)(2l2+l) 

(31)· 

X max 
~The integral functions pA = J pA (x.)dx. diminish as A increases. For example, when T kin"' 1.5 Bev we have Po: p, : p2 = 1: 

(-0.27): 0.085. Therefore it is sri'fficient to use only small values of A in practical calculations by means of (29). In the non­

relativistic limit (for a static nucleon) all pA ,;. 0 = 0. 
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FIG. 1. Energy dependence of the total (elastic+ inelastic) 
cross section for rr + meson scattering by protons. Curve 1) ex­
perimental; curves 2- 7) theoretical (including only dual scat­
tering among the inelastic processes); 2- 5) for ps(ps) coup-
· ling; 2, 3) by damping theory (2- 'i = 6; 3- g2 = 3); 4, 5) by 
perturbation theory (4-g2 = 3; 5-'i" = 2.2); 6, 7) for ps(pv) 
coupling; 6) by damping theory (f = 1/12); 7) by perturbation 
theory (f = 1/12) 

The momentum distribution is obtained by inte­
grating over. d cos J 1 and d cos J 2, with the result· 

d i'N; /A ( J -.1 "' "'T/'N*, ' (x , x·) 
(J l( - 8ti LJ LJ Jll(l l ) 1 ' l 

J!L(l,l,) z' t' 1 2 
1 2 

x T)z'L(r,t.) (x1 , x;) ~ Doo;l. P1. (xi) dxi> (32) 

where 
I. 

Doo; i. = (- 1) z;-!2-Lil~-lc). (2J + 1) c~? l ·ooz (l~l~lll2; U..). 
2 2' 

(33) 

B. Damping Theory 

The dual scattering cross section and the related 
single-meson scattering cross section were calcu­
lated according to the theory of radiation damping, 
where the first Born approximation is taken for the 
reaction matrix K. The covariant formalism of 
Fukuda12 and Pirenne13 was used; pseudoscalar 
ps ( ps ) and pseudovector ps ( pv) coupling were 
considered [see (4)]. 

When we do not limit ourselves to nonrelativis­
tic energies, K}·" ( K1o ... ) are complicated func­
tions and the sohiiion of (21) is difficuJt. We re­
place each K}::: (K1, •.• ) by its value for Kt = K2, 
in which case (21) becomes an ordinary system of 
linear algebraic equations with its solution given 
by the ratio of two determinants consisting of equa­
tion coefficients. It can be shown by studying the 
character of the functions K J;::: ( K1o ••• ) and of 
the density function p2 ( K1o cos 812 ) that the total 
dual scattering cross section is not essentially 
changed. IA 

In the present work values of KJZL(Z1Z2 )(K1o K2) 

2 
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0.5 

z 

/G 
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-~ 
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L_~§:=::::::=-.....L.-_...J.._ __ L__ _ __.l _ ___! Bev 
OZ 0.4 O,G 178 10 I.Z ~~~ Tkin 

FIG. 2. Ratio of inelastic to elastic scattering crosssec=-­
tion for rr+ meson scattering by protons. The notation is the 
same as in Fig. 1. Experimental data were taken from refer­
ence 14 for rr+, p scattering (Tkin = 0.5 Bev) and rr-, p scat­

tering (Tkin 0.7 Bev, 1 Bev); also rr-, n (Tkin = 1.4 Bev) (since 
for this energy there are no corresponding data for rr+, p scat­
tering). 

(for Kt = K2) were calculated for four incident me­
son energies (in the laboratory system ) : Tkin = 
0.275, 0.52, 0.84 and 1.4 Bev, and divided into two 
groups such that, for a given energy, each member 
of the second group was not greater in absolute 
magnitude than 1/ 3 of any member of the first group. 

In order to obtain the matrix elements T~1L(z1 z2 ) 

x ( K1, K2 ) corresponding to the first group we solved 
a set of approximate equations obtained from (21) by 
dropping the last term of the first and second equa­
tions (two mesons - 1', 2'- in the intermediate 
state) .. The single-meson scattering matrix ele­
ments T~z ( Ki) were derived from the same equa-

tions. IA IA 
We assumed TJZL(z1z2) = KJZL(l1z2) for the sec-

ond group, which in the present case represents the 
first approximation of damping theory with respect 
to the coupling constant. For purposes of compari­
son we also considered perturbation theory 

( T~1L(z1 z2 ) = K ~1L(Z1 z2 ) for all scattering ampli­

tudes ) . Figures 1 and 2 show the results for 7T+, p 
scattering. A comparison of the curves calculated 
by perturbation theory and by damping theory for 
ps (ps) coupling shows that damping somewhat 
"improves" the energy dependence of the total 
cross section, although the pronounced resonant 
character of the experimental curves cannot be 
obtained with any of the coupling constants. Inclu­
sion of damping enables us to increase the fraction 
of inelastic processes (dual scattering) for the 
same total cross section. (The experimental points 
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in Fig. 2 lie within a region bounded by curves cal­
culated by the damping theory but go outside this 
region in the case of perturbation theory. ) 

With ps ( pv) coupling damping sharply reduces 
the growth of the total cross section, but the same 
coupling constant cannot be used to obtain a total 
cross section and a cross section ratio which are 
both close to the experimental values. 

A calculation of the total cross section for 1r-, p 
scattering with ps ( ps ) coupling shows that the 
damping theory cannot account for the second peak 
in the energy-dependence curve of the total cross 
section. For any one coupling constant the theoret­
ical curves for 1r-, p scattering lie below the 
curves for 1r+, p. 

The author wishes to thank M. A. Markov for 
suggesting this topic and for his interest, G. F. 
Zharkov and A. M. Baldin for several valuable 
suggestions, and I. A. Egorova and L. A. Isaeva 
for assistance with the calculations. 

APPENDIX 

ANGULAR POLYNOMIALS FOR DUAL SCATTER­
ING 

For some features of the theory (the semi­
phenomenological theory and the derivation of dis­
persion relations) it is useful to know the expan­
sion of matrix T in operators that project the 
initial (one-meson) eigenstate with given total 
isotopic spin and angular momentum into the final 
(two-meson) state. 

We represent (15) for the T matrix as follows: 

J+'J, 
( I T I ) I{\ 1 '\;1 '\;1 '\;1 T' {\ Qfi 
(l)f: I (J.li = (41t),1; L.J .LJ .LJ JlL(l,l,) JIL(l,l,); (A.1) 

J l,L~J--'1, 11,-j-12 i=L 

form a set of orthogonal operators for dual scatter­
ing (the so-called "angular polynomials").* If we 
confine ourselves to l, l1o l2 ::s 2 we have the fol­
lowing operators:t 

Q(±) 1 ( ") 
'/,;o,I(lfl) = -Vi (o•n12 ), 

*Ritus lS has considered such operators for reactions of the 
type a+ b-+ c + d (without the production of additional par­
des). 

tThe sign +(-) denotes a symmetric (antisymmetric) state 
of the system with respect to the exchange n,~n2 • 

Q<+l ( l)z,v--
'I,;I,o(l,l,) = - 2/1 + I Pz, (cos U12)(o•ni), 

where 
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