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The general statistical method of the microcanonical distribution is employed to calculate 
the statistical weights of a many-particle system obeying an arbitrary statistics. The con­
servation laws for angular momentum and parity are taken into account. A general compu­
tational formula is obtained under the assumption that all particles obey Boltzmann statistics. 

WE consider a system of N identical particles 
obeying arbitrary statistics. The particles have an 
intrinsic parity A.. The total angular momentum L 
and the total parity I are given. Furthermore, it 
is assumed that the orbital angular momentum of 
each particle is bounded from above by some maxi­
mal value T, since the particles are produced in a 
limited region and possess, by the conservation 
laws, a finite momentum. Hence 0 s l s Y. 

For the determination of the statistical weight 
(the number of states) of the system under con­
sideration, for given L and I, it is sufficient to 
calculate the number of states FN ,f( M, I) with 
a given projection M of the total angular momen­
tum (and with a given I). The number of states 
with given L and I, GN ,f( L, I), is then deter­
mined with the help of well-known Slater condition 
(see, e.g., reference 1 ): 

GN, 7 (L, I)= FN.l(L, I) -FN. i(L + 1, 1). (1) 

For the calculation of FN [( M, I) one can ef­
fectively use the microcanoni'cal distribution, since 
M is an additive integral of the system. 

Each microstate of our system is completely 
determined by the set of occupation numbers ns, 
where s denotes the set of magnetic ( m ) and 
azimuthal ( l) quantum numbers defining the state 
of the particle. 

The number of states with given M and I is 
equal to 

F N,t(M, I)= ~o (M- hmns) o (N -hn,) +] { 
(n) s s (2) 

x{1 +if{[t.(-1)1(s}f2(n) == ~ FN,l(lVI) -1 ~ F~.i(!H), 
s 

where Q ( n) is the degeneracy of a given micro­
state: 
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= 1 for bosons; ns = 0, 1, 2 ... 
= 1 for fermions; ns = 0, 1. 

Q(n)= 
N! (lins!f' in the case of Boltzmann 

statistics; ns = 0, 1, 2 ... 

The factor ~ { 1 +I II [A. ( -l)z]ns} guarantees 
s 

parity conservation in each microstate; o ( m- n) 
= om,n• the Kronecker symbol. 

The summation goes over all microstates of the 
system, and also over all quantum numbers within 
each microstate: 

I 

~ f (s) = ~ ~ f (l, m). 
z~o m~-t 

In the following calculations we make use of the 
integral representation of the o symbol: 

, { b) ~ (2- ')-1 .-h b-a-ld u a- - ht jz z, 

(3) 

(4) 

Each term in the expression under the integral for 
FN [( M) and FN -z ( M) is rewritten according to 

' ' (4). 
We obtain in the usual fashion (see, e.g., refer­

ence 2) 

(n) 

s n 5 

= (2rri)-2 ~ ~ x-M-ly-N-l dx dy exp <I> (x, y), (5) 

where 
(I> (x, y) = oc L; In [1 -:xyxm (- 1) 1]; (6) 

a=+ 1 for bosons, and a= -1 for fermions. Ex­
panding the logarithm into a series and summing 
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each term over s, we obtain 

"" 12k+I1 k 
<fl (x, y) = h _k_._ <PI (xk) yk, (7) 

k=l 

where 
T 

<DI(z) = ~ (-- 1/ L; zm 

1=0 m=-l 

(8) 

We integrate (5) over y, and obtain, by the law of 
residues, 

F~. 1(M) = (2TCi)-1 ~ x-M-I dx ~r [:NN exp iP (x, y)J , 
y y=O (9) 

or, since FN y( M ) = FN- Y< - M ) , 
' ' 

F,~. 7 (M) = (2r:i)-1 ~ xM- 1dx ~~ [dd': exp <D (x, y)] . (9') 
Y u=O 

Using the expression for the N-th derivative of a 
complex function (see, e.g., reference 3), we may 
also write this result in the explicit form 

' - li+l 
F' -(M) = i.N(-1/"I"l IZ 

,\ • t ..:::.J 't i ~-c., I,-. _-_---,/k:--i-! 1-! .-. -. -k! ( 1 0) 

x (2r.i)-1 ~ xM-NT-1·/ (x)-/ (x2 ) • •• ~/ (x 1) dx, 

where the summation goes over all positive integral 
roots of the equation i + 2j + ••• + lk = N, and 

rp (z) = (I - z2<L+l)) j (I - z2). (11) 

In exactly the same way we obtain 

N+l 
F (M)- '-l a (2-·)-1 

N,l - -'.J1i2/ ... tki! j! ... kl .,[ 

(12) 

where 

~(x) = (1-xl+I)j(l-x) 

Finally, 

1 I · 
F,\',l (M, 1) = ""'I:F N,l (M) -T- 2 F N, 7 (M ). (13) 

Formulas (10) to (13) give the solution of our prob­
lem in the general form, for an arbitrary statistics. 

This result can be easily generaiized to the case 
of a mixture of particles obeying different statistics, 
as was done in reference 2. 

The formulas are considerably simplified in the 
case of Boltzmann statistics. The solution can then 
be given in explicit form. It is easily seen2 that it 
is sufficient to sum the expressions (10) and (12) 
only over the terms with i = N, j = ... = k = 0 
and to multiply the result by N!. We then have 

(12') 

, IN ( 1)Nt ~ - V 
F 1 - (M) = ' :-. xM-Nl-Irt/ (x) dx 

.\. l :!:n:t 

(10') 

The integrals (10') and (12') are equal to the re­
sidue of the argument function at the point x = 0. 

We apply the expansion 

( 1 ;-=__z: ) n = ~ ( _ 1 )' ( 7 ) c ! L-~ 1) zmi+ f , (14) 
i, j 

where ( ~) = c! = n!/i! (n- i)!' to the functions 

under the integral sign in (10') and (12'). By keep­

ing the terms containing xNY-M, we find 

[ N2-M] 
~1 - -

F -(u)- ~ (-l)kr2N)(Nt--M+2N-1--(l+1)k\ 
N, l iVl - "'-J \ k 2N - '1 ) ' 

k=O ' 
(15) 

where [ x) is the integral pa·rt of the number x. 
We note that FN y(M) = 0 if NT-M is odd. 

' The number of states with given M and I is given 
by formula (13). Here 

F.v.-z(M)= ~ FN.I(M,l). 
1=±1 

(17) 

Using formula (1), we now find the number of states 
with given L and I: 

GN;i(L, /) = FN,l (L, 1)-FN,I(L +I, I) 

1 
=;;:fF.v.z(L)-FN,I(L+ I)] 

I { F~.l (L), if Nl- L is even 

+ 2 - F~.l (L + 1), if NL- L is odd, <18) 

or, with obvious notations, 
1 

GN,l(L, /) = '[GN,l(L) 

+ +1 (- l)LG~.I [ L +}(I-(- ])Nl-L)]. 
(19) 

By termwise substitution of expansions (15) and 
(16) for M = L and M = L + 1, we find, with 
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that 

L~:~J 1 _ -
o' -( )=),v '5; (N)(z(Nl-p)+N--1-(l-i-1)k) 

N,l p ..:;..J , k 1 ' 

k=O A -1 (21) 

It follows from (19) that 

Ov.I(L) = ~ Gx_I(L,l) (22) 
1=±1 

is the number of states with a given L (and ar­
bitrary I). 

Corrections taking into account the type of sta­
tistics can, in any specific case, be calculated with 
the help of the general formulas (10) and (12). 

This method allows the solution of a whole series 
of similar problems, as, for example, the determi­
nation of the statistical weight of a system of par­
ticles with arbitrary spin. 

If the system consists of N particles with spin 
s obeying an arbitrary statistics, the statistical 

weight gN s = :6gN s ( S) is given by 
' s ' 

gs. s (S) = fx, s (S)- f.r..·., (S + 1), 
j{x,,(O) for integer Ns, 

g,., s = I t.v., (lh) for half odd-integer Ns, 

(1') 

(23) 

where gN s ( S) is the number of states with total 
spin S, a~d 

s s 

f.,-,,(M) = ~o(M- ~ lllllrn: o(N- ~ nmJD.(n) 
(n} m=-s m=-s 

(24) 
is the number of states with a given projection M 
of the total spin. 

Omitting intermediate calculations analogous to 
those done above, we give the final result. 

In our notations, we obtain for an arbitrary sta­
tistics, 

_ r:/V+I 
f.v.s(M)=~ . . k (2drl 

..:;..J 1'21 . - . l i! j! ... k! 

>( ~ x:ll-.Vs-I<D; (x) <Di(x2) .. . <Dk (x 1) dx, 

<D(z) = (1-z~s+I)/(1 -z). 

(25) 

For the special case of Boltzmann statistics we 
obtain the closed expressions 

[sN-SJ 
_ _ ~~1 (-i)k(N)(Ns-S+N-2-(2s+1)kl 

.!?,~,,(S)- LJ k N-2 ;' 
k=O 

(26) 
[ sN 1 

2s+1l 

~ 
k=O 

(-l)k(N)(sN+N-1-(2s+1)k) 
\k N-1 ' 

if sN is integral, 
a 
.:::>,\', s 

\ 

[s.V-•;,] (27) 

~~~ (- i)k (~)eN- 1/2 +NN--.:_~ ~-(~s + 1)k), 

if sN is half odd-integral. 

For the special case s = % formulas (26) and 
(27) give a well-known result (see, e.g., reference 
1 ) . For s = 1 we get the result4 obtained by the 
combinatorial method. 

A problem similar to the one just considered 
was solved by Barashenkov and Barbashev5 with 
the use of recurrence relations. We further re­
mark that the results of references 1, 4, and 5 
were obtained for the case of Boltzmann statistics. 

In conclusion I take this opportunity to express 
my gratitude to Prof. Ya. P. Terletskii for suggest­
ing this problem and for his interest in this work. 
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