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The part of the mutual friction force in superfluid helium due to the scattering of phonons 
by vortex filaments is calculated. It is shown that the phonon part of the mutual friction 
force becomes comparable with the roton part at temperatures on the order of 0.5°K. 

IT has been shown by Hall and Vinen 1 that in ro­
tating helium II there exists a force of mutual fric­
tion between the normal and the superfluid parts of 
the liquid. To calculate this force it is necessary 
to study the scattering of the elementary excitations 
that make up the normal part of the liquid, i.e., of 
the phonons and rotons, by the vortex filaments. 
At temperatures above about 0.6°K the phonon part 
of Pn is considerably smaller than the roton part. 
Because of this, at such temperatures the entire 
mutual friction force is due to the rotons. Calcu­
lations of this part of the friction force have been 
carried out by Hall and Vinen2 and by Lifshitz and 
Pitaevskii.3 At the very lowest temperatures, how­
ever, the number of rotons decreases sharply, and 
the contribution of the phonons to the mutual fric­
tion force can become important. 

To calculate this contribution we must use the 
ordinary hydrodynamical equations to calculate the 
scattering of sound by a vortex line. We point out 
to start with that the theory given below is essen­
tially based on the smallness of the dimensionless 
quantity 

(1) 

where k is the wave vector of the phonon, w is 
the frequency, c is the speed of sound in the he­
lium, and m is the mass of a helium atom. The 
main part in all phenomena is played by the phonons 
for which fiw ~ KT ( K is Boltzmann's constant), 
so that we have for v: 

(2) 

i.e., v ~ 0.02 for T ~ 0.5°. Physically the quan­
tity v is the ratio of the distance from the axis of 
the vortex at which the speed would equal the speed 
of sound to the wavelength of the phonon. 

We write out the hydrodynamical equations: 

888 

av jat + (v·V)v + Vp /p = 0, 

ap;at + divpv = 0, 

(3) 

(4) 

and take the velocity v in the form v = v0 + v', 
where v0 is the velocity of the liquid around the 
vortex 

Vo = (t / m) [~x r] / r2 (5) 

( (3 is the unit vector along the axis of the vortex), 
and v' is the velocity in the sound wave. We use 
similar expressions for the density p and the 
pressure p: p = Po + p', p = Po + p'. Lineariza­
tion of Eqs. (3) and (4) in the primed quantities 
leads to the equations of propagation of sound in 
the presence of the vortex: 

iJv' ( n) ' ( ' '"') C2 n , V Po ' -81 = - Vo • v v - v • v v0 -- v" + - p ; (6) 
Po p~ 

ap' + d' '+ " ' " ' 0 ( ) ---cit Po I v v v 0 • v p + v p0 • v = . 7 

We now put v' = v1 + v2, where v1 = (k/k)v1 x 
ei(k · r- wt) is the velocity in the incident wave,* 
v2 that in the scattered wave; and similarly we put 
p' = P1 + P2 and P' = Pt + P2 · 

We now make the assumption, the correctness 
of which will be verified later, that at all relevant 
distances the scattered wave is weaker than the in­
cident wave. This enables us to treat the scatter­
ing by perturbation theory, i.e., in the Born approx­
imation. 

We further note that at all distances much larger 
than ti/mc :::::: 0.5 x 10-8 em the condition v0 « c 
is satisfied, so that the change of density in the vor-

*Since the component of a wave propagated along the vortex 
is not scattered, we can confine ourselves to a discussion of 
waves in the plane perpendicular to the vortex line. Accordingly 
in all formulas r, k, and so on are two-dimensional vectors. 
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tex is relatively small, t:.p0 « p0, and can be evalu­
ated from Bernoulli's equation: 

~Po ~ C-2~Po =- PoV2 I 2C2 = r (!I mc2) 2 • (8) 

It can be seen from Eq. (8) that near the axis of the 
vortex the change of the density of the liquid is 
quadratic in the "perturbation" v0, and conse­
quently in the Born approximation we can regard 
p0, p and c as constants in Eqs. (7) and (8). A 
detailed calculation shows that the terms coming 
from the change of density would make a contribu­
tion to the scattered wave containing an additional 
factor of the small parameter tik/mc. Thus we 
have (from now on we shall always write p in­
stead of Po): 

8V2 T C2 

at+ p Vp2 = - (v0 • V) V1- (vl • \1) v0 ; (9) 

ap. d' at+P IVV 2 =-V0 •'ii'h. (10) 

Eliminating the velocity v2 from Eqs. (9) and (10), 
we get an equation for p2: 

(11) 

~P2 + k2p2 = C-2~ {k2 (Vo•Vl)- ik•'ii' (V0 ·V1}- div [(V1•'ii') V0 )}. 

As is well known, the solution of the equation 

(12) 

( t:. is the two-dimensional Laplacian operator ) 
that contains only an outgoing wave at infinity has 
the form4 

p (r) = - { ~ H~1 > (k I r- r' I) Q (r') d2r' (13) 

( H~1) is the Hankel function). Solving Eq. (11) by 
this formula and using integration by parts in the 
terms containing the divergence, we get: 

(14) 

First let us convince ourselves that the condi­
tion for the applicability of the Born approximation, 
which we have used for the calculation, is actually 
fulfilled. For the validity of the Born approxima­
tion it is necessary that the condition 

(15) 

hold at such distances as are of importance in all 
the integrations. It is clear that the region r' "" 
1/k is the important one for the integrals of Eq. 
(14). But for r ...... 1/k 

(16) 

which indeed justifies the approximations that have 
been made.* 

Let us now find the asymptotic expression for 
p2 for 

r~)...~l/k 

(A. is the wavelength of the phonon). To do this 
we use the asymptotic formula 

H~l) (kR) = V2 I o.ikRikR' R ~ 1 I k. (17) 

for r » 1/k values r' « r are the important 
ones in the integrals. We have approximately 

lr-r'l =r-·r'·n; 

H~l) (k I r- r' I)= V 2 I TCikr exp (ikr- ik'· r') 

(18) 

( k' = kn' = kr/r is the wave vector of the scattered 
wave). Substituting Eq. (18) into Eq. (14), we find 

(19) 
i () v-- /k·r v 

P2 = 4 p + 2 I TCikr c- {k2k + (k·k') k + (k •q) k'}·-{-. 

Here q = k - k', and 

Vq = ~ /q•r'v0d2r'. (20) 

We can calculate the integral in Eq. (20) most 
simply by using the fact that 

h divv0 =0, curlv0 =27tm~o(r). (21) 

By the relations (21) one can easily find (Vq •q) 
and Vq x q, and consequently also vq. In fact, 

(Vq•Q) = ~ q/q''·v0d2r 
(22) 

(23) 

We take the vector products of the two sides of 
Eq. (23) by q. Thus we get 

21ti ~ [q x~] = [qx [qxVq]]- q2vq 

or, using Eq. (22), 

Vq = 27t~i[~xq] q-•. 
m (24) 

*We note that p2 « 1 also at all distances down to those be­
tween atoms. In fact, as can be seen from Eq. (14), for small r 
we have p2 - il/mcr, i.e., p2 « p1 for r- a. 
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Substituting this expression into Eq. (19), we find: 

.,= ~ rr£ikr _!i._(t-E::.)(k·[~xk']) 
p- P c• V 2rrikr m q" k 

Differentiating, we obtain the velocity in the 
scattered wave 

ikr ., . 
Vo = k' ~ 'T':e ...!!:._ Sln<pCOS<p 

- c V 2rr:ikr m sin" ('PI 2) ' 

(25) 

(26) 

where cp is the angle between k and k'. We note 
that for values of cp close to zero v2 increases 
as 1/ cp. This means that the Born approximation 

3ro2 n2cu ~ • enkc I xT k'dk 
F=-- cr 

8 xT (enkc I xT -1)• (2ro)3 

Let us insert here the expression (29) for cr* and 
make the change of variable like/ KT = x. Then 

F = ~ (xT)' u (. x•ex dx 
8 (2r.)3 1i'c7m• ~ (ex_ 1)" · 

0 

(31) 

The remaining integral reduces to a Riemann zeta 
function. We get finally: 

F = 3rr'5! C(5) (xT)5 u = 5! C(5)-135 ~ nxT 
8 (2rr)3 n2c'm" 128r. upnph ~ 42 c•m• Pnphu. (32) 

is not valid for small scattering angles. Such angles, 
however, are unimportant for the calculation of the As for the lift force, it is zero in this approxima-
friction force. tion, because of the symmetry of the scattering in 

The effective scattering cross section for the the Born approximation. 
sound, per unit length of the vortex filament, is The effect calculated here can be important only 
given by: at low temperatures, at which the free paths of the 

elementary excitations (and therefore also the vis­
cosity of the normal part) are large and Pn « p. dcr = I v•J" rd = _2:._ (_!_)2 k sin• 'P cos• 'P d 

Jv,j 2 <p 2 me sin4 (<p/2) 'P· (27) 

Let us now introduce the "transport cross section" 

p* = ~ ( 1 -cos <p) dcr. 

The physical meaning of this quantity lies in the 
fact that the momentum transferred to unit length 
of a vortex in unit time by a sound wave of energy 
density E0 is given by 

(28) 

(where J. is the angle of incidence of the sound 
wave on the plane perpendicular to the axis of the 
vortex). Integrating, we find 

(29) 

Let us now go on to the calculation of the phonon 
part of the mutual friction force. The energy den­
sity of the phonons of given frequency and direction 
of motion is E0 = liw dN, where dN is the number 
of phonons in unit volume. When the relative veloc-
•ty . 2 1 1s u = VR - VL (VR is the velocity of the nor-
mal part near the vortex filament, and vL is the 
velocity of the filament), dN has the form 

dN = 1 d3k 
exp {'li (w- k·u)/ xT} -1 (2rr)3 

(30) 
~ dN o - _!;._ (k ·u) e'li"' I xT d"k 

xT (e'li"' I xT -1)" (2rr)3 

( dN0 is the phonon distribution for u = 0). 
Projecting the momentum transfer (28) onto the 

direction u and integrating over the angles, we 
get for the friction force: 

In this case we can neglect all effects associated 
with the viscosity and the Magnus effect (cf. refer­
ence 2), and simply assume that u = Vn- Vs. Then 
formula (32) gives directly the coefficient B in the 
Hall-Vinen expression for the mutual friction force: 

Bq, ~ 42 xT / ;cmc2 ~ 0.42 T. (33) 

Noting that the phonon and roton coefficients Bph 
and Br give the total coefficient B by the formula 

B = (BphPnph + BrPn r) /(Pnph + Pn r) 

(for Pn « p ) , and recalling that Br ~ 1, we see 
that Bph can be of importance only at tempera­
tures ::::, 0.5°. Such experiments are of course very 
difficult, but they are of interest for testing the 
theoretical ideas about the vortex filaments. 

In conclusion the writer expl:'esses his gratitude 
to Professor E. M. Lifshitz and Academician L. D. 
Landau for aid in the work and for a discussion. 
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