
SOVIET PHYSICS JETP VOLUME 35 (8), NUMBER 4 APRIL, 1959 

COHERENT ELECTRON RADIATION IN A SYNCHROTRON. I 

L. V. IOGANSEN and M. S. RABINOVICH 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R., and Moscow State Pedagogical 
Institute 

Submitted to JETP editor May 21, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 1013-1016 (October, 1958) 

The potential for the radiation field of a single relativistic electron moving in a circle and 
simultaneously executing small phase oscillations is considered. A general expression for 
the radiation generated by a bunch is obtained using the potential for a single phase-modu
lated electron and a distribution function for the particles in the bunch. The expression ap
plies at low harmonics, in which case the radiation is coherent. 

ELECTRONS in high-energy synchrotrons radiate vestigating various physical processes and par
over a wide frequency spectrum: this spectrum ex- ticle loss during acceleration. 
tends from the radio-frequency region, correspond- Before computing the radiation of a bunch we 
ing to wave lengths of the order of the orbital radius, consider the radiation of a single electron which 
to the ultraviolet or x-ray region. moves in a circle of radius r 0 with an angular 

In the region in which the wave lengths are much velocity w0, simultaneously executing phase os
larger than the characteristic distance between the cillations at an angular frequency Q « w0. 

electrons in a bunch the radiation is partially coher- We introduce a coordinate system with origin 
ent. The total intensity of the radiation in a given at the center of the circle and take the plane of 
narrow portion of the spectrum is not proportional the circle as the xy plane. The electron coor-
to the number of accelerated electrons N and is dinates as functions of time are: 
a strong function of the dimensions of the electron 
bunch and the nature of the particle distribution in 
a bunch. 

The long dimension of a bunch (orbital direction) 
is determined by the phase oscillations. The trans
verse dimension, which is characteristic of the 
betatron oscillations, is small, being of the order 
of a millimeter in high-energy accelerators. Hence 
the coherent radiation in a synchrotron is affected 
primarily by the phase oscillations of electrons 
and is characteristic of the phase-oscillation dis
tribution of the particles in a bunch. 

A comprehensive experimental investigation of 
coherent radiation has been carried out by Pro
khorov, 1 using a 5-Mev synchrotron. This author 
calculated the coherent radiation for several phase 
distributions for the particles in a bunch.2 Some
what later, Rytov (Report of the Institute of Phys
ics, Academy of Sciences, U.S.S.R., 1950) calculated 
the coherent radiation assuming that all particles 
in a bunch execute phase oscillations of the same 
amplitude. Up to the present time no analysis has 
been made of the coherent radiation of a bunch with 
an arbitrary phase distribution for the particles. 
However, this problem is important because the 
coherent radiation can be used as a means of in-
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x (t) = (r0 - p0 cos .Qt) cos (w0t + <I> sin .Qt), 

Y (t) = (r0 - Po cos .Qt) sin (w0t +<I> sin .Qt). 
(1) 

Here <P is the amplitude of the phase oscillations 
and Po is the amplitude of the radial oscillations. 

We assume that the phase oscillations are har
monic and are given by the relation 1/J = <P sin m. 
The vector potential of the electron field can be 
expanded in a double Fourier series in the wave 
zone. Making use of the fact that p0/r0 "' Q/w0 = 
1/n0 « 1, we obtain the Fourier amplitudes of the 
potential of the electron field (to terms of order 
Q/wo): 

J~ (n~ sin6) J m(nCD), 

Aynm (Ro) = si: fi 
eil~nmRo 

J n (n~ sin 6\J m(nCD). 

(2) 

Here knm = ( nw0 + mQ )/ c, R0 and e are the 
radius vector and the polar angle of the point of 
observation, {3 = v/c, and the Jn (x) are Bessel 
functions. 

When <P = 0, (2) vanishes for m,: 0 and be
comes the well-known expression for the Fourier 
amplitude of the potential of a charge which moves 
with uniform motion when m = 0.3 
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We multiply (2) by exp {- i ( nw 0 + mn) t} and 
write the resulting vector in the form: 

(3) 

Anm(R0 • t)=An(R 0 , t)exp{-im.Q(t-R0/c)}Jm(nrJ)), 

where Au ( R0, t) is the potential of the n-th har
monic in the spectrum of a uniformly rotating elec
tron. 

It is apparent from Eq. (3) that each harmonic 
in the spectrum of the uniformly rotating electron 
is to be associated with a band of frequencies in 
the spectrum of the phase-modulated electron. 
The amplitude distribution in the n-th band is 
given by the factor Jm( n<I>), as in the case of an 
ordinary phase-modulated signal. Jm ( n<I>) falls 
off rapidly when I m I > I n I <I> • Hence the number 
of lines in each branch of the n-th band is I m I :s 
I n I (usually <I> :s 1 in an accelerator). When 
n > n0, adjacent bands start to overlap and the 
interpretation of the spectrum in terms of bands 
is no longer meaningful. 

We now consider the phase-oscillation distri
bution for the particles. 

We introduce a normalized particle distribution 
function in the phase plane: w ( 1/J, ¢, t) which 
gives the number of particles at a time t in ~n 
element dr of the phase plane: dn = Nw ( 1/J, 1/J, t} dr. 
The function w is normalized to unity and the in
tegration extends over the entire region of r which 
is enclosed by the stability boundaries. The non
linearity of the phase oscillations cannot be neg
lected near the stability boundaries. We shall 
analyze the problem in the linear approximation, 
assuming that the amplitude of the oscillations is 
small compared with the region of stability; for 
this reason the exact form of the stability boun
daries is not important. We shall assume that 
they are ellipses: ¢2 + ~2/n2 = <l>fuax; <I>max is 
the amplitude of the largest nonlinear oscillation. 
The linear approximation is valid under the as
sumption that the mean amplitude in a bunch sat
isfies the condition <I> 0 « <I>max· 

Starting from Liouville's theorem and the os
cillatory nature of the particle motion, it is a 
simple matter to find the distribution function at 
any instant of time once it is known for the entire 
plane ~t some earlier time: 

w(tjl, ~, t)=w(rJ)sin(u-~), .QrJ)cos(u-~), t 0), 

rJ) = V tji2 + ~2j.Q2 ; u =arc sin (tjljrJ)); ~ = .Q (t- 10). 

In the simplest case tlie particle distribution is 
stationary, i.e., the distribution density at each 
point is independent of time, depending only on. 
the amplitude of the phase oscillations: w ( 1/J, 1/J, t} 

= w (<I>). Frequently one uses a normalized dis
tribution function (normalized to unity between 0 
and <I>max) for the amplitudes f (<I>); this func,.. 
tion gives the number of particles with amplitudes 
in the range d<I> : dn = Nf (<I>) d<I>. For a stationary 
distribution we have f ( <I> ) = 21TS1<l>d ( <I> ) . We in
troduce another normalized (normalized to unity 
in the interval - <I> max to + <I> max} particle phase 
distribution function cp ( 1/J, t), which gives the 
number of particles at a time t in the angular 
interval dljJ: dn = Ncp ( 1/J, t) dljJ. 

For a stationary distribution: 
<I>max 

1 ( f (<I>) 
rp (tjl) = 7 ~ V<f>2 _ <Ji2 drJ). 

I<JJI 

For simplicity, we usually assume in the cal
culations a particle phase distribution of the form: 

_ {1/4 rJ)o; I tJII-< 2rJ)o 
rp < tJi) - o ; I 41 > 2rJ) o 

j(rJ)) =rJ)j2rJ)0 V(2rJ)o)2 -rJ)2 , 

or else assume that all particles execute phase 
oscillations of the same amplitude, i.e., 

(4} 

f (rJ)) = 0 (rJ)- rJ)o), rp (tjl) = l/7t V rJ)~ - t)lz.' (5) 

In Eq. (4} 2<I> 0 is a singularity and in Eq. (5} <I> 0 

is· a singularity, so that distributions of this type 
cannot apply to actual physical cases. 

The true distribution in a bunch has not been 
studied in any detail. From the experimental am
plitude-distribution curve for the 250-Mev syn
chrotron at the Institute of Physics, Academy of 
Sciences, U.S.S.R., 4 it. may be concluded that the 
particle phase distribution is essentially Gaussian, 
i.e., 

q> (tjl) = _!__ exp {- !"__ (-.'L)2
}, 

2<Po 4 <Po 

f (rJ)) = ;~ exp {- T ( !J2
}. (6) 

Here, in computing the normalized integral we set 
• <I>max = oo, making use of the fact that <I>max » <I> 0• 

We now consider the coherent radiation of a 
bunch; we shall analyze the low-wavelength region, 
where the radiation is coherent. In Eq. (3} we in
troduce the initial phase of the i-th electron 1/Joi = 

<I> sin ntoi and integrate over the electrons in a 
bunch. The potential for a component in the bunch 
field designated by the numbers n and m is of 
the form 

(7) 

where we have introduced the form factor 

F nm = ~ J m (nrJ)) exp {im arc sin (tjljrJ))} w (tji, ~. i 0) di' (8) 

For a stationary distribution, using the variable 
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q, and u = sin - 1 ( 1/J/ <P) in Eq. (8) and integrating 
with respect to u from 0 to 271", we have 

Fnm = 0 for m=j=O, 
<I>max 

Fno = ~ f (<D)Jo (nf) d<D. 
(9) 

0 

The bunch spectrum contains only harmonics of 
the rotation frequency w0• The power in the n-th 
component of the bunch spectrum is In = N2 I F no 12 

x Ino• where In is the power of the n-th compo
nent in the spectrum of the unmodulated electron 
(3). 

We compute the integral in (9) for various dis
tributions: for the distribution in (4) we find Fno = 
sin 2n (<Po )/2n<P0; for the distribution in (5) F no = 
J 0 (n<P0 ); finally, for the Gaussian distribution (6) 
Fno = exp ( -n2<PV1r). 

In the first two cases the form factor oscillates, 
falling off slowly as <Po increases; this behavior 
is due to the singularities in the distributions. In 
the Gaussian case the function falls off rapidly 
without oscillating. By an appropriate choice of 
f ( <P) it is possible to obtain any intermediate 
case. Whence it follows that the energy variations 
in the coherent radiation observed by Prokhorov 
correspond to a well-defined distribution of par
ticles over phase-oscillation amplitudes. These 
variations need not necessarily be found in other 
systems. 

We now consider a non-stationary distribution. 
As a typical example we consider a distribution in 
which all the particles lie in the upper half of the 
phase plane at the starting time, i.e., 

w(~.~.t0)=2w(«<>) if ~>O, 

w(~.~.t0)=0 if ~<O. 
(10) 

Substituting (10) in (8) and integrating with respect 
to u from 0 to 1r we have 

<I> max 

Fno= ~ f(Ct>)J0 (n«<>)d«<>, F nm = 0; m = 2p, 
0 

<I> max (11) 

Fnm=- f(«<>)Jm(n«<>)d«<>; 2i ~ 
mrr: m = 2p + 1. 

0 

The spectrum now contains the fundamental and 
the odd harmonics only. In the frequency region 
in which n < n0 and the bands do not overlap it 
is meaningful to sum over all m harmonics which 
form a band. As a result we obtain a signal which 
is modulated in phase and also amplitude modulated 
at the frequency of the phase oscillations. This 
means that the energy radiated by a bunch in each 
band of the spectrum is modulated by the phase 
frequency. 

The general properties of the spectrum are 
maintained for an arbitrary non-stationary particle 
distribution. The only changes are in the distri
bution of energy in the lines of each band and the 
form of the oscillations which modulate the radia
tion energy. This modulation of the energy of the 
coherent radiation at a frequency close to the cal
culated frequency of the phase oscillations has re
cently been observed at A. = 3 em ( n = 170 ) by 
Iu. M. Ado at the synchrotron of the Institute of 
Physics, Academy ofSciences, U.S.S.R. 

The authors wish to thank A. M. Prokhorov and 
Iu. M. Ado for valuable discussions and for commu
nicating the results of their experimental work 
prior to publication. 
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