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""• J 21 + 1 1,. I,+n fn (r) -u,) ljl1,M = L.Jr 2lo+i Cm;II, -r -Yzn(O,<p) DMJ.w.(8;). 
nn (A.8) 

On the nuclear surface, where r = R ( (} ) , the 
wave function should not depend on cp • This will 
be the case only if, when we substitute r = R (e) 
in (A.8), all terms in the sum over Q except the 
term for Q = 0 vanish. 

It then follows from (A.8) that at the nuclear 
surface 

ljll,M IR (6), 6, <p; 8;] =X (6) D'k'l. (8;), (A.9) 

where 

is some function of e whose specific form will 
depend on ~he structure of the a -particle function 
in the interior of the nucleus. Substituting r = 
R ( (}) in (A.8), equating the right sides of (A.8) 
and (A.9), multiplying both sides of the resulting 

equations by { D~0!Io+Q ( ®i)} * and integrating 

over ®i, we get the boundary condition (2.5). 
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It is shown that relativistic detonation waves in a magnetic field possess properties similar to 
those of the ordinary waves. Solutions of the equations at the discontinuity are presented for 
the relativistic and nonrelativistic cases. · 

SHOCK waves in a plasma situated in a magnetic 
field have been discussed frequently in recent 
times. In some of this work, for example that of 
Hoffman and Teller, 1 use was made of the relativ
istic hydrodynamic equations. 

In the present article we consider "perpendicu
lar" detonation waves, i.e., waves propagated at 

right angles to the direction of the magnetic field. 
One may expect that the influence of the magnetic 
field will become noticeable when its energy per 
unit mass of the medium becomes comparable with 
the energy liberated in the medium. The calcula
tions are made in a relativistic manner, although 
for those thermonuclear fuels which are now known 
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and for fields which can be achieved at the present 
time there is no necessity to take relativistic ef
fects into account. Nevertheless, a relativistic 
treatment is interesting because it indicates the 
behavior of the different quantities in the case of 
more powerful fuels and fields, and gives their 
limiting values. 

1. EQUATIONS AT THE DISCONTINUITY 

We now undertake the derivation of the relation 
between the physical parameters of the cold and 
of the burnt gas in a detonation wave, leaving aside 
for the time being the question of the structure of 
the wave. 

We assume that the shock wave, which forms 
the front of the detonation wave, converts the me
dium into a plasma with infinite conductivity and 
with magnetic permeability J.L = 1. Moreover, we 
assume that the width of the wave is sufficiently 
large that we do not need to take losses into account. 

The equations at the discontinuity express the 
continuity of the components of the energy-momen
tum tensor. In writing them down we should take 
into account the fact that the detonation energy is 
obtained at the expense of converting a certain 
fraction (a) of the rest mass of the initial gas. 
In the reference system in which the wave is at 
rest, they have the following form: 

(1) 

(2a) 

Here p is the pressure, fu H is the intensity 
of the magnetic field, e the internal energy per 
unit volume in the proper reference system, v 
the velocity of the medium, c the velocity of 
light, p the rest-mass density in the proper 
reference system (the one associated with the 
gas), and j the flux density of the rest mass. 
Equation (1) expresses conservation of rest mass, 
(2a) the continuity of the momentum flux, (3a) con
servation of energy, and (4) expresses continuity 
of the field. Equation (4) is valid in virtue of the 
assumed infinite conciuctivity of the plasma, and 
expresses the "freezing" of the lines of force into 
the medium. 

Let us reduce these equations to a more usual 
form by introducing the quantities 

p• = p + H2f2, w' = e+ p+H2 • (5) 

On calculating v and y from (1), and on substi
tuting these expressions into (2a), we obtain 

p;- p~ = - (jjc)2 [w; (1- oc) / p~- w;fp~]. (2) 

Repeating the same calculations with respect 
to (3a), we obtain the equation for the detonation 
adiabatic 

To Eqs. (1) to (4) one should also add the equa
tion of state, which can be written in the form 

(6) 

2. THE JOUGUET POINT 

Equations (1) to (6) form a complete system of 
equations at the discontinuity. In order to solve 
it we must also give one further additional rela
tion, which must be found from the boundary con
ditions. As is well known, the lattei' lead often 
( e.g. in the case of spontaneous detonation) to 
the fact that the detonation wave is propagated 
with the least possible velocity. The system then 
corresponds to the so called Jouguet point on the 
detonation adiabatic. 

We can derive certain general relationships 
which hold at the Jouguet point. To do this, we 
sha.ll utilize the method given by Zel' dovich. It 
is well known that the usual detonation wave con
sists of two regions: of a shock wave of not very 
great width in which the material is heated to the 
required temperature, and of a considerably more 
extensive zone of combustion. In such a case 
Eq. (2) is valid for all the intermediate states if 
a is assumed variable. 

In the case of stronger detonation waves, a 
strict separation into a shock wave and into a 
combustion zone loses its meaning. Combustion 
begins inside the shock wave, which is consider
ably broadened by ordinary and radiant thermal 
conductivity and by slow establishment of equilib
rium between electrons and ions. By utilizing the 
schematic representations of the structure of the 
shock wave developed by Zel'dovich2 and Shafra
nov, 3 we can represent the detonation wave in the 
form shown in Fig. 1. 

Within the region 1 - 1' a gradual heating of 
the gas takes place owing to the thermal conduc
tivity and to the slowing down in the gas of un-
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(7) 

.r 

z 
FIG. 1 

charged particles formed during combustion. Be
tween 1' and 1" the ionic (and, possibly, also the 
electronic ) temperature undergoes a sharp dis
continuity. Combustion, the establishment of 
electron-ion equilibrium, and the slowing down of 
uncharged particles occur simultaneously in the 
region 1"- 2. 

In order that the following arguments be valid, 
it is necessary that combustion should be the slow
est of all these processes, for otherwise it would 
be continued in the region in which energy is ab
sorbed. The final state for the shock adiabatic is 
the state 1", in which the combustion starts. This 
adiabatic is situated below the detonation adiabatic. 
In order to find it, we must generally solve the 
whole problem of the structure of the wave. 

We shall represent the state of the gas on the 
plane ( p*, ( 1 - a )2 w* I p2 ). In this plane the det
onation adiabatic is determined by Eq. (3). As 
may be seen from Eq. (2), the detonation process 
is represented in this plane by a straight line 
passing through the point 1 (cf. Fig. 2) situated 

p 

FIG. 2 

on the shock adiabatic and intersecting the deto
nation adiabatic. A displacement along the seg
ment i - 1" corresponds to the shock wave. Com
bustion is represented by the segment 1"- 2. The 
speed of the wave is determined by the slope of 
this straight line. The wave with the minimum 
speed corresponds to the tangent to the detonation 
adiabatic constructed at the point 1; the point of 
tangency is the Jouguet point. As is well known, 
the part of the adiabatic below this point has no 
physical meaning. 

On differentiating (2) and (3), and on taking 
into account the identity 

d (w" I r) = dp" I p + Tds 

( s is the entropy per unit rest mass ) , we obtain 
the following relation: 

(8) 

From this we see that at the Jouguet point, where 
dj = 0, we must have 

ds2 = 0. (9) 

From Eq. (3) we now obtain the flux . 
i" 1 [ ap; J (10) 

C2 = - (1- a)• a (w; I p~) ; 

This relation gives us immediately 

(11) 

The derivative should be taken after replacing H2 

by its value from Eq. (4). 
As is well known, c ( Bp/ ae) ~2 is the relativ

istic expression for the speed of sound. The right
hand side of (11) is the speed of sound in the mag
netic field. We obtain the usual result: the wave 
moves over the detonation products with the speed 
of sound. 

3. SOLUTION OF THE EQUATIONS 

For a definite detonation process we know the 
parameter a, the thermodynamic state of the 
gas 1, and the magnetic field H1• To be able to 
find the remaining quantities, we must express 
explicitly thermodynamic functions for the detona
tion products. We give below the solution of Eqs. 
(1) to (4) and (6) for the detonation wave which cor
responds to the Jouguet point in the case when the 
detonation products may be regarded as an ideal 
gas. 

_For a relativistic ideal gas the following equa
tion of state remains valid 

(12) 

where a= RT/c2• The heat function has the form 

w = pc2g(cr) 

and the speed of sound is given by 

fH2 I pc2 + f (a)J'I• 
a =C H 2Jpc2 +'g(a) 

We introduce the dimensionless variables 

R. = P2 I (I- ex) ext, h =Hi/ p1c2 (13) 

The functions f ( a) and g ( a) which depend 
on the kind of gas have, generally speaking, a 
fairly complicated form for a gas heated to tern-
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peratures at which relativistic effects come into 
play (for the electronic component of the gas this 
occurs at T ~ 109°K). It is therefore convenient 
to express the solution of the system of equations 
in parametric form (the parameters are R and 
u). It may be written down in the form of a quad
ratic equation for h: 

h2 [-3R 2 -1-2 (3g -f)R + 2(g- f)(a -g)-g2 ] 

+hI- 2R2+ (3g-4f) R 

+ 4gf + 4a (g- f) - g 3 1 RJ 

+ 21- fR + gf +a (g- f)]= 0 

(14) 

and of the equation 

1 ~ a2 = (g + hR)2 - ~R_!/ <~ + ~· [g + (2h + 1) RJ. 

(15) 

The results of sample numerical calculations 
are shown in Figs. 3 to 6. 

4. THE NONRELATIVISTIC CASE 

We shall examine in greater detail the case 
when the energy liberated and the energy of the 
magnetic field are both low in comparison with 
the energy of the gas. We may set in Eqs. (1) 
to (4) and (6) 

V1l C <!/;; 1; V2l C <!/;; 1; oc <!/;; 1; 

Hi I P1C2 <::: 1; ocp1c2 = q; w--+ pc2 + w. 

(16) 

Here q denotes the quantity of heat liberated per 
unit mass, while the nonrelativistic heat function 

FIG. 7. The lower curve 
corresponds to RT2/q. 

is denoted by the same letter w. The system (1) 
to (4) and (6) now assumes the usual form: 

PlVl = P2V2, Pl + PlV~ + HU2 = P2 + P2V~ + H~12, . 
q + W1 + v~ 12 + H~ I P1 = W2 + v~ 12 (1 7) 

+ H~IP2• H1IP1 = H2IP2· 
The speed of sound is given by 

V2 = (xp2l P2 + H:/ rz>'''· (18) 

For those cases which are of interest in con
nection with the foregoing, the detonation canal
ways be regarded as strong, i.e., we can set p1 = 

w1 = 0. Moreover, we shall assume that the prod
uct of detonation is an ideal gas. 

We introduce the dimensionless variables 
V- ~-

P2 = P1R2. V1 = qV1, V2 = ~ qV2, 

H~ = P1qh1o H~ = P2qh2, P2 = P2qz2. 
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The solution may be given in parametric form 
(parameter ~ ) : 

1 [1-(2-x)R~(1-R2)][(x/2)(1-R~)+xf(x-1)] 
h1 2R 2 [x (1- R 2) + 1] 

2-x 2 2-x 
+-4-R.(I-R.)-2(x-1)R.-1; (19) 

z2 = h1 [I- (2 -x) R~ (I- R2)J /2R2 [x(l- R 2) + 1]; 
2 2- )( v. = xz. + - 2-h1R.. vl = R.v •. 

where K is the adiabatic coefficient. This solu
tion is given in Fig. 7 for K = %. 

1 G. Hoffman and E. Teller, Phys. Rev. 80, 692 
(1950). 

2 Ia. B. Zel'dovich, J. Exptl. Theoret. Phys. 
(U.S.S.R.) 32, 1126 (1957), Soviet Phys. JETP 5, 
919 (1957). 

3 v. D. Shafranov, J. Exptl. Theoret. Phys. 
(U.S.S.R.) 32, 1453 (1957), Soviet Phys. JETP 5, 
1183 (1957). 

Translated by G. Volkoff 
27 

SOVIET PHYSICS JETP VOLUME 35 (8), NUMBER 1 JANUARY, 1959 

A NONLINEAR THEORY OF VECTOR FIELDS 

V. Iu. URBAKH 

Institute of Biological Physics, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor February 17, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 208-215 (July, 1958) 

In analogy with Einstein's theory of gravitation, the existence of a physical vector field is 
treated as the curvature in a "non-Pythagorean" space whose metric is ds = 'Yi dxi. This 
leads to nonlinear field equations which in the linear approximation (for weak fields ) be
come the usual equations. In spite of its potential being singular, the total energy in the 
field of a point charge is finite. 

1. STATEMENT OF THE PROBLEM 

As a rule, the nonlinear generalizations of field 
theories are constructed in an attempt to eliminate 
divergences in ordinary field theory. It is known, 
however, that this can be done also in other ways 
( nonlocal interactions, the use of higher driva
tives, space quantization, etc.). Furthermore, 
one likes to hope that it is possible to go on without 
essentially leaving the framework of the existing 
theory. This would seem to be why the nonlinear 
theories do not receive wide recognition at present. 

We wish to emphasize that a nonlinear generali
zation of field theory is necessary, independently 
of the divergences in the linear theory and inde
pendently of the possible necessity for other gen
eralizations. Our argument is based on the follow
ing considerations. 

(a) In principle, nonlinearity in field theory fol
lows unavoidably from the fact of pair creation and 
annihilation, which leads to nonlinear effects such 
as scattering of light by light. It is not, therefore, 

merely accidental that when dealing with interac
tions in modern field theory we arrive at nonlinear 
equations. Nonlinearity whould therefore not be 
considered simply one of many possible methods 
for eliminating the difficulties of the theory, but 
as a reflection of the objective properties of the 
field. 

(b) It is well known that in all nonlinear theo
ries there appears a characteristic length which, 
although it has different meanings in different ver
sions, is always of the order of magnitude of the 
"classical radius" r 0 = e2/m0c2 of the field's 
source. This parameter serves as a criterion 
that can be used to define weak fields (with r 
» r 0 ) for which nonlinear effects can be neg
lected. It turns out that in electrodynamics all 
real processes take place in a region for which 
r » r 0 (weak fields and low energies), and the 
linear theory is insufficient only when one needs 
to consider virtual processes with arbitrary en
ergies. The situation is different, however, where 
in mesodynamcs, weak fields ( in the above sense 


