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For q2 « M2 ( q2 ~ IL 2 ) we neglect all the terms 
in (17) except for the first one, containing 4>B-H· 
For q2 » m2 it is possible to neglect 11> 1 entirely, 
the remaining functions assume the simple form 

<PB-H = (p+ + p:._) q2L) V q4 + 4q2m2 - 2p+p_; 

<P =- 4w2 1n (p+.&max 1m). 

We leave L in its previous form, in view of 
the large coefficients in the terms with m2• 

Formula (17) can still be integrated over 
dp+ for P+ + p_ = const ~ w ( q2 = const) and 
2Mdp_ = - dq2• Then, for q2 » m2: 

da = - ~3 .!!:!L {a2 (q2) [ q• L - J...] 
3q• V q• + 4q2m2 2 

(19) 

-3ab- In-- -1 q2 L <Ullmax -j 
M2 2m 

(20) 

+ b2 ..!!_ [ . q•L + 6 In <Ullmax _ ~]} • 
4M 2 V q• + 4q•m• 2m 2 

Analogous results can also be obtained for 
bremsstrahlung. For this purpose it is necessary 
to replace in the matrix elements (2) 

and in formulas (9) to take d3p2d3w/ ( 27T )6 instead 
of the statistical factor d3p+d3p_ / ( 27T )6 • The re
sults can be obtained from formulas (10) to (15) 
by substituting 

P+P-dP+ do do -:. ].2_ d<U do do · 
(i)3 + - Pt (1.) Pz Wt 

( J-2 is the angle between p2 and p1 ) • 

In conclusion, the author expresses sincere 
gratitude to I. M. Shmushkevich for suggesting 
the topic and for valuable advice. 
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A discussion is given of the correlation of the polarization of internal-conversion electrons 
with the direction of emission of the electrons in the preceding {3 -decay. If one neglects the 
Coulomb field of the nucleus, then in the case of a magnetic multipole the polarization is lon
gitudinal and does not depend on the energy. In the case of an electric multipole both longi
tudinal and transverse polarizations occur, with dependence on the energy. 

l. Owing to the nonconservation of parity in {3- possess a preferred polarization.* This effect can 
decay the daughter nucleus is polarized in the di- be used both in studying {3 -decay and also in study-
rection of the emitted {3 -decay electron (the par- ing the properties of nuclear levels, since (as will 
ent nucleus is supposed unpolarized, and the direc- be shown below) the character of the polarization 
tion of emission of the neutrino is'not observed). 
Therefore if an internal-conversion process occurs 
after the {3 -decay, the conversion electrons must 

*Our attention was called to the existence of such an 
effect by A. I. Alikhanov and V. A. Liubimov. 
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of the conversion electrons depends in an essential 
way on the order and type ( electric or magnetic) 
of the multipole involved in the nuclear transition. 

The general expression for the polarization vec
tor <u> of the internal-conversion electron, for 
the case of an allowed {3 -decay transition, has the 
following form: 

a (v·n)n + b (v-(v·n)nJ, (1) 

where a and b are constants depending on the 
angular momenta of the nuclear states and the en
ergy of the transition, cv is the velocity of the {3 

particle, and n is the unit vector of the direction 
of the conversion transition. 

In fact, Eq. (1) is a general expression with the 
following properties: (1) it is a polar vector, cor
responding to the fact that the polarization appears 
only as a result of the nonconservation of parity in 
{3 -decay ( <u> is an axial vector); (2) it is in
variant under replacement of n by - n, which 
corresponds to the conservation of parity in the 
internal-conversion process; (3) it is proportional 
to the velocity vector of the {3 particle, which de
termines the polarization of the daughter nucleus. 

2. Let us find the density matrix characteriz
ing the polarization state of the nucleus formed as 
a result of the {3 -decay. If this nucleus is in a 
state with angular momentum h. and if the initial 
nucleus was unpolarized and the direction of the 
neutrino was not observed, then the general ex
pression for the density matrix that determines 
the distribution of the angular-momentum compo
nent m 2 must have the following form: 

P , = -. _1 -{a , + (i2 -:f-1 )''·~c'·m,, v~-<}, (2) 
m,m, 2]2 + 1 m,m, ]2 j,m,,!~-< 

where vJ.L = ( - 1 )J.L v -J.L are the components of the 
vector (v0 = Vz; v±1 = 'f (vx 'f ivy )/2112 ), and 
C: : . are the coefficients of vector composition 
( Clebsch-Gordan coefficients), which differ from 
the matrix elements of the angular-momentum 
operator J only by a normalizing factor: 

(jm I JIL I jm') = (jm' I J~-' I jm) = v j (j + 1) cf:;:., IW 

The constant t can be expressed in terms of 
the constant that appears in the expression W for 
the angular distribution of the {3 particles from 
the decay of polarized nuclei. 

For this purpose let us consider the {3 -decay 
of a polarized nucleus with angular momentum h 
into a nucleus with angular momentum h· The 
probability for the decay can be written in the 
form 

w = Sppou+u, 

where U is the operator describing the transi-

tion h - h and p0 is the density matrix of the 
state h· If the state of polarization is defined by 
the average angular momentum vector <J> , 
then 

The matrix u+u is proportional to the expres
sion (2). Indeed, the density matrix (2) is deter
mined by the transition h - h. and since the 
state h is not polarized, 

Pm m' = (U+U)m m' jSpu+u. z 2 2 2 

Consequently, apart from a common factor 

w (' 3 <Jv> cJ,m, \ 
~ om,m:+ Yidi2+1) j,m',,tv) 

Performing the summation over m 2 and m2, we 
get 

(3) 

Thus we can omit consideration of the {3 -decay 
stage of the process, and determine the constant 
t in Eq. (2) from a comparison of Eq. (3) with 
the known expression for w.1•2 In particular, for 
an allowed {3 transition in the case of S, T, A, 
and V interaction variants (with neglect of Cou
lomb forces ) t is given by 

where 

x ( ( I c s j2 + I c~ 12 + I cv 12 + I c~ 12) I MF 12 

+ {I cr 12 +I c~ 12 +I c A i2 + I c~ 12) I MGT l2t 1 • 

A"',= U~ U2 + 1)- ja Ua + 1) + 2} I {2j2 U2 + 1)), 

MF = (~ 1), MoT=(~ cr). 

3. Suppose the nucleus makes a further transi
tion from the state hm2 to the state hm1• The 
matrix element of the internal-conversion process 
can be written in the following form3 (omitting 
common factors that are of no importance for our 
purpose): 

Mm,m, = (j2m2/ Qt~ I hm1)" ~ ljl; (r) Bt~ (r) IJI1 (r) dr. (4) 

Here Q~k is the operator of the 2L-pole elec
tric (A. = 1 ) or magnetic (A. = 0 ) moment of the 
nucleus, corresponding to the transition in ques
tion; I/J1 and I/J2 are the wave functions of the 
electron for the initial and final states; and B ~k 
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is the operator of the interaction of the electron 
with the multipole field. This operator has the 
following form 

B~1 = a~Y LLM (r / r) G L(wr), 

B~1 = YLM( +) GL(wr) 

./;.L+1 (r) + r -L-a~YL,L-l,M, GL-1(wr). 

G1 (x) = i 1H\~·1,(x)/Vx, 
where a is the Dirac matrices, w is the energy 
of the transition, H(l) is a Hankel function, Y LM 
is a spherical harmonic, and YLZM is a spheri
cal vector, the components of which are defined in 
the following way: 

(YuMt = Cf:!1 '"Ytm· 

We confine ourselves here to the free-electron 
approximation 

where E and q are the energy and momentum of 
the conversion electron, u and u0 are two-com
ponent spinors, and u is the Pauli matrices. Then 
the integral in Eq. (4) reduces to the following: 

(" . (r) (q)·1 q .\ e•qrylm -,- Gc (wr) dr ~ Ycm (n) <:> ; n = q. 

Omitting unimportant factors, we get the ex
pression for the matrix element 

(5) 

where in the case of a magnetic multipole ( A. = 0 ) 

Vi?k = (o·n) oY LLM (n), (5a) 

and in the case of an electric multi pole (A. = 1 ) 

() ,j2L+1 
VlM=YLM(n)+ r -L-x(o-n)oYL,L-1,M(n); 

e:-m 
x=e:+m. 

(5b) 

The probability of internal conversion is given 
by the quantity 

(6) 

If we represent W in the form 

then the density matrix of the conversion electron 
is obviously equal to P/Sp P. Furthermore, if P 
has the form 

P =A (1 + ~o), 
then the polarization vector of the conversion 
electron is given by 

(o) = ~-

(6a) 

(6b) 

4. Substituting Eq. (5) into Eq. (6), we use the 
fact that since the electron in the initial state is 
not polarized u~u~* = oaf3· Then we get the fol
lowing expression for P: 

P ( . I Q(A) I . >' (. . 'Q<'> I . ) v<A> v<~->· = Pm,m; f2m2. LM hm1 }2m2 1 LM' hm1 LM LM'• 

(7) 

The product of the last two factors, which is a 
matrix with respect to the spin variables, can be 
represented in the form 

(8) 

Using the expressions (5a) and (5b), we get 

(I) • 2L + 1 • 
RMM' = (1+2x) YLMYLM' + -L-x2 Y L,L-L, MYL,L-1, M; 

S(l) • L + 1 • 
MM' = t -L- X2 (Y LLM X y LLM] 

I L +1 • • 
- (x + x2) J -L-(YLLMY LM' + YLMYLLM'). 

The matrix element of the multipole moment 
can be represented in the following form: 

(Sa) 

(9) 

where Q(A.) does not depend on the quantum num
bers m 1 and m2• Substituting Eqs. (2), (8) and 
(9) into Eq. (7), we get, omitting unimportant com
mon factors: 

(summation over all repeated indices is understood), and using the relations 

cj,m, cj,m, - . 2j2 + 1 ' •. 
j,m, LM j,m, LM'- 2L + 1 °MM • 

we have 

p = R(A) + oS(A) + ~v'"L (L + 1) + h (h + 1)- it (h+ 1) eLM, (R(A) . + oS(),) ·). 
MM MM Zj2 y L (L + 1) LM, 1" MM MM (10) 
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In Eq. (10) the first two terms, after they are 
summed over M, cannot depend on n. Therefore 

S(A) 0 (A) 1 I (A) d 
MM = , RMM = canst = -470 J RMM o. 

From the expression (Sa) it follows that 

R(O) - 2L + 1 R(l) - (I + 2 + 2L + 1. 2\, 2L + 1_ 
MM - ~ ' MM - x L X j 47t • 

For the calculation of the last two terms in Eq. (10) 
we take the z axis in the direction of the vector v. 
Then instead of the sum over p, there remains 
just the one term with p, = 0, and M' = M. Using 
the explicit expression of the coefficient 

Ct1:l.1o = M !VL (L +I) 

and the fact that R~k, does not depend on the sign 
of M, we get 

~MR~~=O. 
M 

We have still to find the last term in Eq. (10), 
i.e., the quantity 

(11) 

According to Eq. (Sa), in the case of a magnetic 
multipole the vector s(o) is directed along n, 
since Y LLM is a transverse vector. This means 
that for magnetic transitions the coefficient b in 
Eq. (1) is zero. 

Comparing Eq. (11) with the first term in Eq. (1), 
we see that 

v] MS.\'l~w = f (v·n) n = fvnzn' (12) 
M 

where f is a constant. To determine this con
stant we integrate Eq. (12) with respect to the 
solid angle; this gives 

~" f = ]M ~s;o1Mdo. 
M 

Substituting the explicit expression for S~M• we 
find 

According to Eq. (Sa), in the case of an electric 
multipole s<1) contains two terms. The first term, 

s~,1 )' is directed along n and is calculated in the 
(o) (1) 

same way as S . The second term S .J.. , propor-

tional to Y LLM· is perpendicular to n, and con
sequently must have the form of the second term in 
Eq. (1), i.e., 

~ (1) . ' v ~ MS1_ MM = g(v- {v·n)n). 
M 

Using the explicit form of si1) and integrating this 
equation over -the angles, we find 

g = 2L ~~ 1 V L (L + I). 

Substituting these results into Eq. (10), we get on 
the basis of Eqs. (6a) and (6b) the following expres
sions for the polarization vector of the conversion 
electron: 

(a) in the case of a magnetic multipole 

(c) = (rC / j 2) n (n.v); (13) 

(b) in the case of an electric multipole 

( > L+1 1: 
c = r 1 +2x+x2 (2L +1)/L J;' 

x{(x+x2)(n(n·v)-v)+ x~ (n·v)n}, (14) 

r = [L (L +I)+ j2(j2 +I)- ir(j1 + I)]/2L(L +I). 

We see from Eq. (13) that in the case of a mag
netic multipole the polarization is longitudinal and 
does not depend on the energy of the polarization 
electron. This feature is, however, closely con
nected with the free-electron approximation which 
has been used here. Therefore a treatment of this 
problem with exact wave functions for the conver
sion electron would be of interest. 

According to Eq. (14), in the case of an electric 
dipole the polarization is decidedly energy-depend
ent. When the speed Vk of the conversion electron 
is small, the transverse polarization is propor
tional to vk I c2, and the longitudinal polarization 
to (vk/c)4• These results also need to be made 
more precise, since for small velocities the effect 
of the Coulomb field of the nucleus can be impor
tant. 

We express our sincere gratitude to Academi
cian A. I. Alikhanov and V. A. Liubimov for their 
interest in the work and a number of helpful dis
cussions. 
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