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tegrals of the first and second kind respectively. 
It can be seen from Eq. (2) that 7Jeff ..... 1, i.e. 
Jeff "' m/E2. The form-factor F can be deter
mined from comparison with experiment. At high 
energies, the differential cross section for small 
angles attains large values. 

Integration over E2 and 1) can be carried out 
only for F = 1. We have then 

cr = (e2 /247t2) (R / m) <P (1Jmax), 

(3) 

If we put 1Jmax = oo ( in general, 1Jmax should be 
of the order of unity) we have q, ( oo) = 9n1 /8 

-28 2 ' a "' 10 em . As in the scalar case, 1 the total 
cross section is independent of the y -quantum 
energy and is proportional to R/m and not to R2 
since in the effective region for the process, that' 
ahead of the nucleus, the 1/J -function of the emitted 
particle has a shadow and the whole process is de
termined by the penumbra region. 

Equation (2) has been obtained under the assump
tion that the nuclear radii ( R1 with respect to pro
tons and R2 with respect to antiprotons) are equal, 
R1 = R2 = R. The cross section for the process is 
then independent of which particle, the proton or 
the antiproton, is free in the final state. If R1 ,c R2, 
and ~R » 1/m, then the cross section for the proc
ess with emission of the more strongly interacting 
particle is, in the given approximation, exponentially 
small ( "' exp ( - a~R), a ..... m). The cross section 
for the process with emission of the less strongly 
interacting particle (the proton ) can be obtained 
from Eq. (2) by replacing R with 2R1 for R1 > R2 
(or with 2R2 for R2 < R1). 
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RECENTLY a number of papers1- 4 have appeared 
in which different modifications of the Overhauser 
method are proposed to obtain nuclear polarization 
in nonmetals. In particular, these papers discuss 
the polarization of the nuclei of paramagnetic atoms 
in salts and of the nuclei of donor and acceptor im
purities in silicon and germanium. The problem is 
mainly to obtain a nonequilibrium nuclear polari
zation thanks to the fast passage effect. In the 
present paper we shall be concerned with obtaining 
a stationary nuclear polarization. 

Let us consider a system consisting of a nucleus 
of spin I and an electron located in a magnetic field 
of strength H. The system will have 2 ( 21 + 1) 
levels corresponding to two values of the electron 
spin component ( M ) , and 2I + 1 values of the 
nuclear spin component ( m). Assuming the ex
ternal field to be sufficiently strong ( Zeeman en
ergy of the electron considerably larger than the 
spin-spin interaction energy of the electron with 
the nucleus ) we get 2I + 1 transitions in the para
magnetic-resonance spectrum (selection rules: 
~M = ± 1, ~m = 0). To evaluate the population of 
the levels, we neglect the spin-spin interaction 
energy and the Zeeman energy of the nuclear spin, 
and we obtain 2I + 1 pairs of levels with an en
ergy level difference in each pair equal to 2/3H 
(see figure). 

c--

m=/-1 
m=-1 

We consider the most important case, where 
we can neglect for the nuclear spin all interac
tions except the contact interaction, which is pro
portional to ( S ·I) o ( r). In that case we have, for 
the relaxation processes involving the nuclear spin, 
the selection rule ~ ( M + m ) = 0. 

Let complete saturation be reached (that is, 
let the saturation parameter be equal to unity )I for 
all 2I + 1 paramagnetic resonance levels. We 
get then Overhauser's known result, i.e., the de
gree of polarization is equal to 

f = BI(2/0), o = ~H jkT, (1) 
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where BI is the Brillouin function. In other words, 
we have the result that the effective nuclear gyro
magnetic ratio is equal to the electronic gyromag
netic ratio. 

In the case of nonmetals, however, we have a 
developed hyperfine structure of the paramagnetic 
resonance, and it is difficult to saturate all its 
components. Simple calculation shows that upon 
total saturation of the hyperfine structure compo
nents corresponding to a nuclear spin component 
equal to m, we get for the nuclear polarization 

[/(I+ 1)- m2] (e28 - e-28)- m (e8- e-8)• 

f = 21 [2 (/ + 1) + (!- m) e~8 + (/ + m) e-28] ' ( 2) 

In particular, we have for 6 « 1 

f= I(I+1)-m2 o, 
1(21+1) 

and for 6 » 1 

f = (/ + 1 + m) I 21, 

f=1/2(/+1), 

if m =1= !, 

if m =I. 

(3) 

(4) 

We see thus that for small 6 it is more advan
tageous to saturate the lines with m = 0 or m = 
±! (depending on whether I is integral or half
integral ) to obtain the largest f. In the case of 
large 6 it is advantageous to saturate the line 
with m = I - 1. In particular, in the latter case 
we get f ::::~ 1 for 6 » 1, as can easily be under
stood (practically only the level M = -!, m = I 
will be occupied) . 

Experimentally the magnitude of the nuclear 
polarization can be measured from the intensity 
of the unsaturated paramagnetic resonance lines, 
from the intensity of the nuclear magnetic reso
nance lines (transitions AM= 0, &n = ± 1 ), or, 
in the case of the polarization of radioactive nuclei, 
from the angular anisotropy of the '}'-radiation. 
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1HE production of many pure metals has been 
made possible by to the development of the method 
of multiple zone crystallization ingots.1 Thus, mul
tiple zone crystallization of tin ingots2 combined 
with prolonged high-temperature heating of this 
metal in high vacuum3 has yielded tin of very high 
purity. 

The purification of the tin was controlled by 
measuring the residual resistance 6 = R4•2 /Rroom 
of samples taken from different sections of the 
thoroughly heated and re-crystallized ingot. (Here 
R4•2 is the resistance of the sample at 4.2°K and 
Rroom - its resistance at room temperature.) 
While working with high-purity tin, Ru was found 
to depend on the cylindrical-sample, wire diameter, 
owing to the fact that this diameter became com
mensurate with the electron mean free path. 

Figure 1 A presents 6 as a function of the 
cylindrical-wire diameter for tin with 6 00 = 1.8 x 
10-5• 
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FIG. 1. A -Variation of residual resistance of tin with 
000 = 1.8 · 10"5 with the diameter of the cylindrical wires. 
B - theoretical curve4 of o/ Ooo as a function of k = d/A for 
p = 0; d - diameter of the cylindrical wires, >..- electron mean 
free path, o - experimental data for A= 0.65 mm. 

It is known that the investigation of the electric 
resistances of thin films and metal wires is the 
oldest method of determining the electron mean 
free path in these materials. This problem was 
theoretically investigated for cylindrical wires by 
Dingle.4 His work contains a table of a00 /a for 
arbitrary k, along with the formulas 




