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NuMEROUS articles have appeared recently (see 
reference 1, for example) concerning approxima
tions to the solution of the Thomas-Fermi equa
tion2 for a free neutral atom: 

cp" = cp''' I ~·"· (1) 

Here ~ = r/JJ., r is the distance from the center 
of the atom, JJ. = va0/zt/3, a0 is the Bohr radius, 
and v = 0.8853. 

As a measure of the accuracy of an approximate 
solution, Umeda3 has suggested using the numeri
cal solution of an integral whose variation gives 
Eq. (1): 

00 

/(cp) = ~ [cp'2 + (415) cp'/,';-'i•J d~. (2) 
0 

This functional has a minimum value4 of 1.3612 
when <P is an exact solution of (1). The deviation 
of I from the minimum value can serve as an es
timate of the degree of accuracy of the approxi
mate solution. Thus for Sommerfeld's approxima
tion5 <P = [ 1 + ( ~/122/3 )A.] - 3/A., I= 1.3670; for 
Kerner's form <fJ = [ 1 +A.~ ]-1, I= 1.3679; for 
Tietz's solution <fJ = [ 1 + A.~ ] - 2, I = 1.3662; and 
for Rosenthal's solution6 <fJ = 0.7345e-0 • 562~ + 
0.2655e-3 · 392~. I= 1.3636. 

We can write <fJ in a new form for which I= 
3.624, which is much closer to the minimum value: 

(3) 

Here and hereinafter x = A.~, where A. is a param
eter which can be determined in different ways. A. = 
A.um = 6.119 is determined by Umeda's method 
from the condition BI/BA. = 0. 

Equation (3) can be derived by making the tran
sition from the Lenz-Jensen approximate expres
sion p ( r) for electron density in an atom to the 
function <P ( ~ ) • For this purpose let us consider 
the following relation between p ( r ) and <P ( ~ ) : 

p1 (r) = (ZI 47t[L3) cp" I~. (4) 

Pu (r) = (Z l41tfL3 ) (cp I~)'''· (4a) 

When <P is an exact solution of (1), PI and PII 

will of course coincide. When <fJ is approximate, 
(4a) must be used because the function itself is a 
better approximation than its second derivative. 
But (4a) does not generally satisfy the normaliza-

oo 

tion condition J p47rr2 dr = Z for approximate <fJ 
0 

and arbitrary A. . Therefore instead of PII we 
must take 

P = Pu ("A I "-Ma)'l•, 

where A.Ma is determined by the mean value 
method: 

"' 
\ (cp"- cp'/, I ~·I·) ~d~ = 0, 
0 

(4b) 

which has been proposed by March. 1•7 The trans
formation (4b) insures normalization of p for 
arbitrary A. as well as fulfillment of the virial 
theorem 2Hk + Hp = 0. The advantage of (4a) and 
(4b) over (4) now also follows from energy consid
erations. Thus using Tietz's simple and conven
ient approximation of <fJ, (4) gives for the total 
energy of an atom by the Ritz method2 H = -0.660 
in the units z7/ 3e2/a0, whereas from (4a) and (4b) 
we obtain H = - 0. 768, which is much closer to 
the exact value H = -0.769. The: value of p ob
tained from (4a) and (4b), with A.= A.Ri as deter
mined by the Ritz method from BH/BA. = 0, may 
be regarded as the approximation that corresponds 
to a given approximate <fJ. For example, from 
Tietz's form (A.Ma = (7r/8)2/3 = 0.536), we obtain 
an expression which insures normalization and ful
fillment of the virial theorem, and also gives a 
good value for the energy: 

Z 8).3 _,1 (I + )-a PT! =----X ' X , 
47t[l3 7t 

where A. = A.Ri ::: 0.527. 
On the other hand, let us start with the well

known Lenz-Jensen approximation8 for p: 

(5) 

and pass in reverse to <fJ using (4a) and (4b) 
[ A.M = ( 4P )2/ 3]. Letting C = Y3, we then obta:in 
(3), ~here A. differs from the A. of (6) by the fac
tor o/s. The selection of C = Y3, which differs . 
somewhat from Jensen's value C = 0.265, is re
quired to improve the form of <P at zero [ <P' ( 0) = 
- 1.530 instead of <P' ( 0 ) = - oo with the exact so
lution <P' ( 0) = - 1.588]. When C = %, A.Ri = 11.41 
and H=-0.76 [forcomparison A.Ma=11.87 and 
A.um = <%> 6.12 = 13.77 ]. The form (3) which has 
been obtained is. quite simple and convenient. In 
the principal range of variation, 0 < ~ < 1, the 
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value of r.p obtained from (3) differs on the aver
age from the exact solution obtained numerically 
in reference 9 by less than 0.5%, and never differs 
by more than 1%. In the same region, r.p' differs 
by less than 2.5% on the average and by not more 
than 5% from the exact value of r.p'. 

In conclusion it should be noted that any attempt 
to derive an extremely accurate approximation of 
the Thomas-Fermi function at small and at large 
distances from the nucleus is devoid of meaning, 
for there Eq. (1) does not correctly indicate the 
potential in the atom. 

I am indebted to D. A. Kirzhnits for suggestions 
·and discussions. 
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THE production of a star by a y -quantum through 
an intermediate 1r -meson pair was investigated in 
reference 1. In the present work we consider an 
analogous process: a high-energy y -quantum pro
duces a proton-antiproton pair one particle of which 

is absorbed in the nucleus, producing a star. The 
other particle carries away energy of the order of 
the energy of the star. The study is carried out 
for the ultra-relativistic region where ,only small 
angles between the momentum of the y -quantum 
and that of the emitted proton ( or antiproton) are 
of importance. The strong interaction between the 
proton (and antiproton) and the nucleus is ac
counted for by using the optical model. The nucleus 
is regarded as an ideal black body of a given radius, 
as far as the proton and antiproton are concerned. 

We shall assume that the behavior of nucleons 
is described by Dirac's equation. The anomalous 
magnetic moment of the nucleon is not of great 
importance for such high energies. Let us assume, 
for example, that the proton is absorbed and the 
antiproton is emitted to an infinite distance. Dirac1s 
equation for such a process can be written as fol
lows: ( ti = c = 1 ) 

,t, ( ) ie ( ) ikr,t,(-) ( ) (rV- y4£ 1 + m) 'fp, r = -V _ re e 'fb r . 
2w 

(1) 

where p, E1 ( p2, E2 ) are the momentum and energy 
of the proton ( or antiproton ) . We shall denote the 
momentum of a y -quantum of frequency w by k, 
and its polarization vector by e. The wave function 
of the antiproton, which is a free particle in its final 
state, is a superposition of a plane wave and of a 
wave diffracted on the black nucleus. 2 

We find the wave function l/Jp1 of the proton by 
means of the Green's function3 of Eq. (1), under the 
condition that the antiproton is at infinity. We ob
tain the cross section for the process by calculat
ing the total flux of protons incident upon the nu
cleus: 

dcr = \ j (s1) ds1 iF 12 dp2 dk2/ (2'1t) 3 ; .. 
j (sd = (~p, (sd i~1 ~P• (sJ)), 

where k2 is the transverse momentum of the 
emitted antiproton and F is in the nature of a 
nucleon form-factor .4 Integration over s 1 ( s 2 ) 

is carried out along a circle with radius R, per
pendicular to p1 ( p2 ) and passing through the 
center of the nucleus. 

We obtain the following expression for the dif
ferential cross-section of the process, averaged 
over possible polarization of the y -quantum: 

e2 I F 12 R 2 2 
dcr (£2, TJ) = (;)3 (21t)3 m {[E2 +(w- £2) ] K (s) 

dE2dYJ + E 2 (w-E2)E(s)) ,1 ; (2) 
(1 +'1)2) 2 

'1l = k2 / m, s2 = TJ2 / (I + "'12), d1J = "fJd"fJdcp~, 

where K (E) and E (E) are complete elliptic in-




