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solutions of another kind. It is easily seen that the 
solution (16) cannot be reduced to Schwarzschild's 
solution, which follows from the general theory of 
relativity. 

*There is an evident illusoriness in the currently widely 
discussed "test" of the general theory of relativity through 
measurement of the perihelion shifts of artificial satellites. 5 

Such a test can provide no basis for a choice between the gen­
eral theory of relativity and Birkhoff' s theory. 
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1. In a positive column where negative ions are 
produced spatially and disappear at the wall, their 
relative concentration, which was obtained in ref­
erence 1, satisfies the condition K > De/2Dp- 1,* 
where De and Dp are the diffusion coefficients 
of electrons and positive ions. This condition is 
required for the flow of negative ions to the wall, 
where they recombine. The wall is a surface sink 
for the negative ions produced within the volume. 

2. When decay of the negative ions through col­
lisions with neutral atoms2 is included, the situation 
becomes somewhat more complicated, but we still 
have a linear problem which can be completely 
solved. For ambipolar diffusion, subject to the 
assumptions De» Dp, Dp ~ Dn, be» bp ahd 
bp ~ bn, we obtain an equationt for the concentra­
tion of negative ions in the column: 

where y is the rate of decay of negative ions per 
ion and the rest of the notation is that used in ref­
erence 1. This is a cubic equation in K which can 
be solved as follows: 

(a) K > De /2Dp - 1. With this concentration 
more negative ions are created per unit volume 
than decay, so that the column is a spatial source 
of negative ions. The negative ions produced in 
the column diffuse to the wall, which serves as a 
surface sink. 

(b) K = De /2Dp - 1. In this case the negative 
ions created by electrons adhering to neutral atoms 
equals those vanishing through decay. There is no 
effective resulting creation or disappearance of 
negative ions in the column. Their radial flow is 
zero and the total number of negative ions in the 
column is determined only by processes in the 
space. 

(c) K < De/2Dp- 1. Here the number of nega­
tive ions disappearing from the column exceeds 
the number produced, so that the column is a spa­
tial sink for negative ions. Their radial flow is 
directed toward the axis and a stationary state is 
possible only in the presence of a surface source 
at the wall.* 

Thus in a positive column, where the disappear­
ance of negative ions obeys a linear law, small val­
ues of K are possible when there is near the sur­
face of the wall** a layer that produces a flow of 
negative ions into the column, where they disappear 
through decay as a result of collisions with neutral 
particles. Our conclusion that a surface source 
exists agrees with Glinterschulze's hypothesis4 of 
a layer of negative ions at the wall. 

3. When we take into account the spatial re­
combination of positive and negative ions, we can 
in general distinguish two regions of the column, 
an inner region where recombination predominates 
over creation, and an outer region where creation 
is stronger than recombination. We are here con­
cerned with effective spatial sources and sinks. tt 
Since the equations of balance are nonlinear the 
problem can be solved more or less simply only 
for regions close to the axis of the discharge.1 

*In reference 3 it was assumed that x « 1 in the absence of 
spatial disappearance of negative ions. This is unacceptable 
to us, since x is a solution of the system and is fully deter­
mined by the kinetics of the column. The analysis carried out 
in reference 1 and in the present note shows that x can be 
small only when a spatial loss occurs. 

tThe solution is obtained as in reference 1. 
tThe strength of the surface source per unit length of the 

R 
column is given by the integral 2rr f ({3 -yx)Nerdr, where Ne 

0 

is the electron density. 
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**Reference 3 considers negative ion concentrations which 
fulfill the condition bp x./be « 1. Then, as is easily seen from 
the expression for the flow given in reference 2, there must be 
a source of negative ions at the wall. We therefore consider the 
boundary condition Nn(R) = 0 not to be stringent enough. 

ttThe inclusion of surface sources of negative ions will 
only shift the boundary between the regions toward the wall. 
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l. We consider the surface waves ( s. w. ) 
exp [ i (hz - wt) + yx ] propagating along the inter­
face x = 0 of two semi-infinite media. Medium 1 
( x > 0) is isotropic ( E = E0, J.L = J.Lo ). Medium 2 
( x < 0 ) is gyrotropic with a dielectric constant E 
and magnetic permeability J.Lik: 

that is, the direction of the external magnetizing 
field is such that H0 II OY. We shall consider 
H-mode surface waves (Hz r< 0) in a medium 
with tensor J.Lik ( ferrites). All of our results 
will also be valid for media with tensor Eik 
(plasma, Hall effect etc.) when E, H, E, J.Lik• w 
are replaced by H, E, J.L, Eik• - w. 

2. From the continuity of Ey and Hz at x = 0 
(Hz is given in terms of Ey in reference 2) we 
obtain an equation for u = -he/ w, the retardation 
coefficient of the wave ( u = c/v c/J• where v cp is 
the phase velocity): 

fLo (u2- E[L 1_)'/z + [L l_ (u2- EofLo)'iz = fLoru, (2) 

r = fL2IfL1· 

Equation 2 was analyzed graphically. Some of the 
results follow. For r > 0 and J.Lj_ > 0, Eq. (2) 
has a real root if 

for EfL 1_ >EofLo: fL 1_ + fLo> fLor > fLo (I - 8 ofLo I E[L 1_)'1•, 

for 8[L 1_ <EofLo: [L 1_ +fLo> flor >fLo (I - 8ofL 1_ I 8fLS1•. (3) 

This is the only root; the wave thus propagates in 
only one direction ( h < 0). For EoJ.Lo f- EJ.L 1_ slight 
gyrotropy ( r « 1 ) cannot invalidate the law for 
an isotropic boundary. Just as in the isotropic 
case, 1 a s.w. does not propagate for E > 0, J.L > 0. 
But with EJ.Lj_ close to EoJ.Lo a unidirectional wave 
(only in the z direction) is possible even for 
slight gyrotropy (theoretically also for paramag­
netics ). 

For J.Lj_ < 9, r > 0, and IJ.L1_I > J.Lo the condition 
for propagation of the direct wave ( h > 0 ) is 
J.Lor < IJ.Lo + J.L l_l, while for the reverse wave ( h < 0 ), 
r < (1 + IEJ.Lj_I/EoJ.Lo)i/2• Thus, depending on the 
values of E and J.Lik• both waves are propagated 
or one alone, or, finally, s.w. are impossible. 

3. We now consider the more complicated case 
of s.w. in a gyrotropic plate 3 ( 0 < x < d, J.L = J.Lik) 
between isotropic media 1 ( E = Eoi J.L = J.Lo) and 
2 ( E = €; J.L = 'j1). Let d be large; for the boundary 
x = d we set up an equation similar to (2), differ­
ent from (2) only in the sign of the right-hand side, 
i.e., the boundary x = d guides s.w. in a direction 
opposite to that on the boundary x = 0. Accord­
ingly the field of the direct wave is concentrated 
at one boundary and the field ofthe reverse wave 
at the opposite boundary: for Eo = E' and J.Lo = /1: 

Eu = A1ey,x + A2e-y,x, A1. 2 = YafLo ± Y1fL 1_ =F fLorh. 

When the boundary which conducts energy in the 
undesired direction is covered with an absorbing 
film we obtain a unidirectional system. 

For y 3d :::: 1 we must take into account the in­
teraction of the boundaries and investigate the char­
acteristic equation. In the general case (Eo r< €, 
J.Lo r< 'j1) this equation is 

h~r2 + hr (y1P1- Y2P2)- Y1Y2P1P2- Yi 

(4) 

(i)2 ,__. cu2 

Yi = h2 - C2 E fL; Yi = h2 - C2 E[L j_' 

This equation contains a term which is linear 
in h, so that the direct and reverse waves differ 
not only with respect to the field distribution but 
also with respect to the phase velocity and critical 
velocity. For EJ.L 1_ > EoJ.Lo > € it 

c aPt+ ~P, 
Wcr = d (a.P1 + r) (~P,- f) ' 

(5) 

IX = (I - eotJ.o)'i•. 
e[J. .L , 

( ;;;: )''· ~= 1-- . 
e[J.l_ 




