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The principal processes taking place in a spark channel at moderate currents are examined. 
Solutions are obtained for the motion of the gas outside the channel. A new type of hydrody
namic jump is considered - a strong discontinuity with external supply of heat. Certain solu
tions are found which describe the state of the gas inside the channel, and expressions are 
obtained for the characteristic parameters of the channel (radius, temperature, etc.). 

1. INTRODUCTION 

IN the present paper we consider the development 
of a spark channel under comparatively high pres
sures and moderate currents. This process has 
been studied in detail by Mandel' shtam and his co
workers. t-s In reference 1, on the basis of experi
mental results, the idea was expressed that the 
rapid development of a spark channel is accounted 
for by the excitation of a shock wave. In subsequent 
papers, this phenomenon was studied in detail, both 
experimentally and theoretically. The theory of the 
development process was given by Drabkina; the 
results of her calculations are in good agreement 
with experiment. However, the theory advanced by 
Drabkina is not complete; the electrical conductiv
ity and the temperature in the channel are not com
puted in this theory, so that it does not permit us 
to calculate the parameters of the spark directly, 
by starting from the law of current growth. Rather, 
it only relates the velocity of its growth with the 
energy released in the channel; this latter energy 
must be determined experimentally. 

In the present research, an attempt is made to 
consider a specific mechanism of the discharge and 
to construct a step-by-step theory of the develop
ment of the channel, with account of the electrical 
conductivity and the thermal conductivity of the 
ionized gas in the channel. 

In accord with the results of references 1 to 6, 
the picture of the development of the spark channel 
can be represented in the following form. A com
paratively narrow current-carrying channel is 
formed in the gas, with high temperature and ioni
zation. Joule heat is released in this channel, 
which then leads to an increase in the pressure 
and a thickening of the channel. The thickened 
channel acts like a piston on the remaining gas 
and, since the expansion takes place with super
sonic speed, it produces a shock in the gas; this 

shock is propagated in front of the original "pis
ton." The temperature in the vicinity of the shock 
(between the wave front and the "piston") is much 
higher than in the gas at rest, and the temperature 
in the channel itself is still many times higher than 
in the shock wave. Consequently, the density of 
the gas in the channel is very low, and the major 
part of the mass of the moving gas is displaced 
from it, which also makes it possible to consider 
the boundary of the channel as a piston. 

The very fact of the formation of the narrow 
channel can evidently be understood by starting 
from the following considerations. After the gas 
sparks over and becomes conducting, Joule heat 
is released at points of flow. As is well known, 
the electrical conductivity of the gas increases 
rapidly with temperature. Thus, at a high degree 
of ionization, when the collisions of electrons with 
ions are important, the electrical conductivity is 
proportional to T3/l, while at low ionization this 
dependence is even stronger, (because of the fact 
that the degree of ionization increases rapidly with 
temperature). As a consequence, a tendency ap
pears toward a concentration of current in a com
paratively narrow channel, so that at the places 
where the temperature is higher, the conductivity 
is also great, a large current exists there, and a 
large amount of heat is liberated, which leads to 
more heating, etc. The physical processes which 
determine the breadth of the channel and limit the 
concentration of current are the leakage of heat 
from the channel and the broadening of the heated 
region under the action of the pressure. 

With some indefiniteness, we can consider as 
the channel the region from the axis to the point 
where the temperature becomes so low that ioni
zation begins to fall off appreciably. In the chan
nel, we can neglect the inertia of the gas, but it is 
necessary to take into consideration the release 
and transfer of heat. In the shock wave region, 
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the inertia must be considered, but we can neglect 
the electrical and thermal conductivities. These 
two regions as separated by a transition layer, 
the "shell" of the channel. Heating and ionization 
of the gas that enters the channel take place in the 
shell. 

2. FUNDAMENTAL EQUATIONS 

The fundamental equations of the problem under 
consideration are the equation of continuity, the 
equation of motion, and the equation of energy 
transfer: 

~ + v ~ + 0 a (rv) = o· 
at ar ' rar ' (2 .1a) 

( av av \ ap . r 7ft + v ar) + ar = o, (2.1b) 

:t (r;s + p~2) + + :r{rr,v (s + f· + ~2)} + ar~rq) = j£. 
(2.1c) 

.Here p is the density, v the velocity, p the 
pressure, E the internal energy per unit mass 
of gas, q the heat flow, f the current density, 
and E the electric field. 

We shall write the equation of state in the form 

p=(ne+nt)T=(Z+l)pT/ma, (2.2) 

where ma is the average atomic mass, ne and 
ni the number of electrons and ions per unit vol
ume, Z the average ionic charge, and ne =Ani. 
The temperature is expressed in energy units. 

We shall assume that the ionization in the chan
nel can be computed by Sach's formula. This prob
lem is considered in detail in reference 6. 

The internal energy of the gas in the channel is 
expressed in the form 

3 p I p[3 I ·1 
3 = T p + rna = p 2 + (Z + 1) T . ' (2.3) 

where I is the total energy of ionization plus the 
energy of dissociation, referred to a single atom. 
It is appropriate to apply Eq. (2.3) in the case of 
complete ionization, for example, for hydrogen, 
Z = 1, I = 15.7 4 ev. For incomplete ionization, 
the energy of ionization increases with increasing 
temperature. According to Sach' s formula, the 
ratio l/T depends rather weakly on the density 
and temperature; therefore, for a not too wide an 
interval of change of these parameters, the expres
sion in the square brackets can be considered 'to 
be approximately constant. In this case it is more 
suitable to take the expression for the energy in 
the form 

1 p 
8=y-1p' (2.3a) 

as was done by Drabkina.2 Here '}' is the effective 

ratio of specific heats. The value of '}' is some
what different for the gas in the channel and in the 
shock wave. According to reference 2, y = 1.25 
for hydrogen and 1.22 for air. 

Transfer coefficients. The electrical conduc
tivity a and the thermal conductivity K differ 
strongly for the ionized gas (see, for example, 
reference 7): 

cr = cr 1 (Z) T'J, = 3cr' (Z) T'J, / 4e2 V2T:ml.; (2.4) 

x = x 1 (Z) T'l•. (2.5) 

Here e and m are the charge and mass of the 
electron, A.= ln ( 3T312/ze3 v'47Tile ), and a' ( Z) is a 
dimensionless coefficient. For Z = 1, 2, 3, and 4 
we have, respectively, a' = 1.95, 1.135, 0.840, and 
0.667. The value of Ke2/aT, according to the 
Wiedemann-Franz law, is of the order of unity. 
For Z = 1, 2, 3, and 4 this combination is equal 
to 1.62, 2.16, 2.40, and 2.60 respectively. The 
"Coulomb logarithm" A. is only slightly sensitive 
to the values of the quantities entering into it. For 
A.= 5, for example, we have a1 ( 1) = 3.4 x 10-13 

sec-1 ev-312, and K 1(1) = 3.9 x 1020 cm-1 sec-1ev-512• 

We note that the electrical conductivity of air 
increases with the temperature more slowly than 
T3/2, because of the increase of Z as a conse
quence of ionization. At a temperature on the order 
of several electron volts, it changes approximately 
as Tif2 and is equal to 2 x 1014 sec-1 for T ~ 3 
to 4 ev. 

Radiation. A simple estimate, taking experi
mental data3- 5 into account, shows that if the radi
ation from the channel were black body radiation, 
it would carry several tenfold more energy than 
is actually released in the channel. In fact, the 
radiation is nonequilibrium and flows freely from 
the channel. For open radiation, div q = QR_, where 
QR_ is the energy radiated per unit volume. The 
fundamental mechanism of open radiation is the 
retardation radiation 

Q~et = 1.5 · 1 o-25ntneZ2T~~ (erg-em -a sec-t) (2.6) 

(see reference 8) and recombination radiation. For 
hydrogenlike atoms, the latter can be computed 
from the approximate formula 

Q, 5 10-24 z4r-'J, ( -a -t) rec = . n;ne ev erg-em sec . (2. 7) 

Equation (2.7) was obtained by V.I. Kogan, using 
the cross section of recombination at the different 
levels given in reference 9. 

For partially-ionized atoms of the different ele
ments, which cannot be considered hydrogenlike, 
one must expect that the radiation of Z charged 
ions is greater than calculated by the "hydrogen
like" formulas, because of the incomplete screen-
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ing. This circumstance can be taken into consider
ation if we use the effective change Zeff == Z + t:.. 
in place of the actual charge of the ion Z. Accord
ing to UnsOld, iO we can take as a sort of mean value 
(as a rough approximation, with great uncertainty) 
t:.. == 1.5. 

Radiation in the discrete spectrum as a result 
of resonance absorption is forbidden for many lines 
and is close to the equilibrium ( Planckian) in in
tensity. The presence of such radiation increases 
the thermal conductivity of the plasma. In the 
present research, however, we shall not consider 
this radiation thermal conductivity, since its cal
culation is a complicated independent problem 
which requires a detailed knowledge of the spec
trum and the line widths. 

Skin effect and the magnetic field. The penetra
tion depth o of the field after a time t can be es
timated by the formula o2 "' c2t/21l'u. According to 
Abramson and Gegechkori,3•4 u == 2 x 1014 sec-i. 
At the instant t == 10-6 sec, the radius of the chan
nel becomes a "' 1 mm, which yields o2/a2 "' 102• 

Thus we can consider the electric field to be con
stant over the cross section and use the expression 
j == uE for the current density. 

We now estimate the role of magnetic forces, 
for which we compare the magnetic pressure H2/81l' 
with the gas-kinetic pressure. The latter has the 
same order of magnitude as the kinetic energy per 
unit volume. If an appreciable amount of the liber
ated Joule heat remains in the form of the kinetic 
energy of particles in the channel, then the pressure 
can be estimated as 

1 J2t H2 82 

P- ;,;a2 rw2 cr ~ 8rt £l2 · (2.8) 

It is then evident that we can regard the magnetic 
forces as inconsequential when we can neglect the 
skin effect. 

The magnetic field begins to have a strong ef
fect on the kinetics of the electrons (on the elec
trical conductivity and especially on the thermal 
conductivity) when the frequency of their rotation 
in the magnetic field w == eH/mc is comparable 
with the collision frequency 1/T. For typical val
ues of the magnetic field and density in the channel, 
Mandel' shtam and his coworkers obtained in their 
experiments WT "' 0.1. 

We shall neglect both the magnetic forces and 
the effect of the magnetic field on the kinetics of 
the electrons. 

The shell of the channel. Ionization jump. Since 
we are dealing with entirely different simplications 
in the channel region and the shock-wave region, it 
is necessary to establish the condition of joining 

the solutions on the boundary between the two re
gions. Physically, the joining takes place in the 
transition region, in the shell of the channel, where 
a transition occurs from a strongly ionized gas to 
a weakly ionized one, and where an intense ioniza
tion process is taking place. We shall not investi
gate the behavior of the quantities in the transition 
layer, but shall consider them ( approximately ) as 
discontinuities, as is usually done for discontin
uities in hydrodynamics. We shall assume here 
that the transition region is not very wide. 

We shall denote by a the velocity of motion of 
the discontinuity, and use the index 1 for quanti
ties on the outside and the index 2 for quantities 
on the inside (the channel side). The laws of con
servation of mass and momentum take the form 

PI(vi-d)=p2(v2-d) g; 

PI+ PI (vi- d)2 = P2 + P2 (v2- d)2. 

(2.9a) 

(2.9b) 

The density in the channel is very low, p 2 « Pii 

therefore, the first condition yields vi== a. The 
pressure jump is expressed in the form t:..p == Pi -

2 ( -i -i) c "d 0 ° p2 == g p2 - Pi • ons1 ermg p2 « Pi> g "' p2a, 
p "' Pia2, we find that the pressure jump is small: 

(2.10) 

We shall assume that the pressure does not undergo 
a jump. Then, neglecting the heat flow on the side 
of the cold dense gas, we obtain the condition 

g (s2 + PIP2) + q2 = 0. 

from the conservation of energy. 

3. QUASI-SELF-SIMILAR SOLUTION 

(2.11) 

As is well known (see reference 11), the motion 
described by two dimensional parameters is self
similar. In our case, the motion as a whole depends 
on a large number of parameters; however, we can 
find an approximate solution which is self-similar 
separately in the region of discharge and in the re
gion of the shock wave. Curves representing the 
dependence of different quantities on the radius re
main, in each of the regions, the same with passage 
of time, but their scales change in each region ac
cording to its own law. 

Shock wave. The motion of the gas outside the 
channel is completely determined if the time de
pendence of the radius of the channel is given. The 
boundary of this channel plays the role of a piston 
whtch displaces the gas. If this dependence has a 
simple power form 

a (t) =At~< (3.1) 

and if the pressure in the wave is so large that the 
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pressure of the undisturbed gas can be neglected, 
then the motion in the region of the shock is deter
mined by the two dimensional parameters A, Po 
and is self -similar. 

In place of the variables t, r in Eqs. (2.1), we 
introduce the variables t, x = r/ac ( t ), where ac 
is the radius of the wave front. We introduce also 
the new dependent variables: 

P1 (x) = pI Po• V 1 (x) = vI de, 

PI (x) = p /Pod~. (3.2) 

Neglecting the heat released and transferred, we 
can rewrite Eq. (2.1) in the form 

( 
I ) dp 1 , 1 dXV' o· 

v-x dx 1 P xdx=' 

( 1 ) . dv' 1 dp' I -- V 1 + (v 1
- x)- + -- = o· k dx p' dx ' 

2 (I 1 ) I ( 1 ) dp' 1 dxv' 0 -- p + V -X - + yp - = . k dx xdx 

(3.3) 

The boundary conditions in a strong shock wave for 
x = 1 have the form 

p1 = (y + I) (y -If\ v' = 2 (y- lfl, 

p'=2(y-lfl. (3.4) 

Equations (3.3) with boundary conditions (3.4) were 
integrated numerically on an electronic computing 
machine for the values k = 1, %. % and 'Y = %. 
%, %. The results of the integration are shown in 
Fig. 1. The position of the piston is determined by 
the point where v' = x. The pressure at the piston 
Pk can be obtained from the velocity of the piston 

(3.5) 

where the coefficient of resistance Kp will be con
sidered as approximately equal to 0.9 (see Fig. 1, 
Kp = p'( s) a2/a~). 

The Channel. Let us consider the case in which 

0.87.5 0.87.5 I 0.7.5 Q87.5 

FIG. 1. Distribution of the velocity v' (dashed lines), pres
sure p' and density p' behind the front of the shock wave as a 
function of x = r/ ac for various values of k. The curves 1 cor
respond to y = 5/3, 2 to y = 7/5, and 3 to y = 9/7. 

we can neglect radiation. Then 

q = -xdT fdr. (3.6) 

We shall assume that the temperature in the 
channel is appreciably higher than is necessary 
for complete ionization. Then, on the boundary of 
the channel, where the ionization is beginning to 
fall off, the temperature will be much less than at 
the center, and we can set (approximately) T = 0 
for r =a. 

We transform from the variables t, r to the 
variables t, s = r 2 /a 2 ( t), and also introduce the 
new dependent variables 

~ (s) = -Jo , U = { ;a (~ - ~ ) ' 

y = -:-. {_i_ + _5_ (..!!___ - _!_)}· 
2a pa 2 a a (3.7) 

Here T0 is the temperature on the axis. We shall 
regard the pressure as constant over the cross 
section of the channel. Equations (2.1a), (2.1c), 
(3.6) take the form 

du 
ds 

where 

1- (1/2k) dy = .':!,s.·t.- (2- ~) 
{) ds 4 4k ' 

d{) y + 5/2 u{) (3.8) 
liS = - cxs{)'f, 

rx=x(T0)T0 Ipaa, 
~=a (T0) £2a2 jx (T0 ) T 0 • 

(3.9) 

(3.10) 

The condition (2 .11) becomes y ( 1 )/u ( 1) = 
I/( Z + 1) T0• It is then evident that for self-simi
larity the temperature ought not to depend on the 
time. The same applies to the quantities a, {3. 
Making use of (3.5), (3.10), we obtain the result 
that a ...., t 3/ 4 , E ...., C 3/ 4 • The electric field is con
nected with the current by the relation 

J = (cr)rra2£, (3.11) 

where the angular brackets denote an averaging 
over the cross section of the channel. Thus, the 
self-similar mode is obtained only in the case of 
a definite law of current increase: J ..... t 3/ 4• Actu
ally, the current changes sinusoidally, but for the 
first quarter period of the sine wave we can use 
approximately the results obtained from the self
similar mode. 

Equations (3.8) have been integrated numeri
cally for k = % with the boundary conditions 

fors=O u=O, y=O, &=I, 

fors=l yju=li(Z+I)T0 , &=O(&<'Sl). 

In the actual integration, the parameter a was 
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assigned and f3 was so chosen that the quantity 
J. ( 1) was as small as possible. The exact value 
of J. ( 1 ) is rather unimportant, since the curves 
hardly depend on it over the major part of the in
terval. The characteristic curves are shown in 

0 0.5 

FIG. 2 

I.Os 

Fig. 2. The values of I/( Z + 1) To= 5.95, 2.0, 
1.56, 0.9, and 0.25 correspond to a= 16, 8, 6.90, 
5.33, and 4 and f3 = 1.48, 1.56, 1.60, 1.68, and 
1.80. The coefficients Ku = < T 312 /T312 > and Kp 
= <T0 /T> change in this case from 0.661: to 0.632 
and from 1.49 to 1.69, respectively. We shall 
henceforth take approximately f3 = 1.6, Ku = 0.655, 
and Kp = 1.55. Knowing the dependence of a and 
f3 on the temperature, it is possible to find all the 
parameters of the channel. However, it is more 
suitable to use Eq. (4.4), in which we must replace 
u by <u> = u1 <T312>. In accord with (2.3), it 
is necessary to replace in Eq._(4.4') (Y -1 )-1 by 
% + Kpi/( Z + 1) T0• For the temperatures of inter
est, the single-term approximation ~::::; 3..,II/(1+Z)T0 

is valid with sufficient accuracy. Using Eqs. (3.10), 
(3.11), (4.4) and the values of the coefficients that 
have been obtained, we get the radius of the channel, 
the temperature, and the electric field. For hydro
gen, we have: 

a= 1.53p;;-''" (Jt-'1•) 'f,t'l•; 

Th = 3.5pJ" (Jt-'1')'1•; 

(3.12) 

(3.13) 

(3.14) 

For the temperature in the channel, the condition 
Tk = ( < T 312 > )2/ 3 is assumed. Here we have ex
pressed Tk in ev, a in mm, E in v/cm, J in 
kiloamperes, t in J.LSec, while the density unit 
is 0.9 x 10-4 g/cm3• In reference 4, for a 15-kv 
discharge, a 2J,Lhy self inductance and a 0.25J.Lf 
capacitance, the measured values for the radius 
of the channel (for hydrogen at atmospheric pres
sure, Po= 1) were 1.00, 1.55 and 2.60mm for 0.3, 
0.5 and 1.0 J.L sec, respectively. The corresponding 
values computed according to (3.12) are 1.00, 1.50, 
and 2.45. The agreement is rather good. Experi
mental data for the quantities in (3.13) and (3.14) 
are unfortunately lacking. The existence of such 
data would have made it possible to verify Eq. (2.5) 

for the thermal conductivity of the plasma, since 
the radiation does not play an important role in 
the given case. 

4. HOMOGENEOUS MODEL OF A CHANNEL 
WITH A DENSE SHELL 

If the removal of heat from the channel is 
brought about by transparent radiation, while the 
thermal conductivity can be neglected, then we 
can demonstrate a simple self-similar solution 
for the region of the channel: the pressure, tem
perature and density are constant over the cross 
section, while the velocity is proportional to the 
radius. The entire temperature drop is concen
trated in the shell. The radiation is absorbed 
there, and the ionization of the gas entering the 
channel takes place in that region. If we consider 
the shell to be thin, we can obtain a set of equations 
for the basic parameters of the channel. In the 
general case, use can be made of these equations 
as a mathematical model describing, however 
roughly, the basic processes in the channel. In 
this case we can also take the thermal conductiv
ity into consideration ( approximately ) . 

The equations for the energy balance in the 
channel and the shell have the form 

(4.1) 

(4.2) 

where M and W are the mass and energy of the 
gas in the channel. Equation (4.1) is obtained by 
integration of (2.1c) over the cross section of the 
channel (including the shell) without any assump
tion on the form of the distribution of the quantities 
over the cross section. For the homogeneous 
model, we set W =ME, M = 1ra2p. Equation (4.2) 
is obtained from (2.11). The expressions for the 
release of Joule heat QJ and for the heat loss by 
radiation QR and by thermal conduction QT can 
be written in the form 

QJ=J2fr:a2cr, QR="'a2QR (p, T), 

Qr = 1.3-2r.xT. (4.3) 

In order of magnitude, QT"' K ( T/a) 21ra, while 
the coefficient in (4.3) is chosen in correspondence 
with the results of the previous section Eq. (3.10) 
wherein Tk = ( < T 312 > )213 was assumed for the 
characteristic temperature in the channel. Approx
imately, it can be obtained from (3.5) for a weak 
shock, or it can be considered equal to the pressure 
of the undisturbed gas, when the wave becomes 
weak and undergoes a transition to the acoustic 
type. 
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Making use of (3.5) and (2.3), we can rewrite 
(4.1) in the form 

Po2T:2a3a3~ = J2 I a, (4.4) 

~ = KP [ 1 + (y- 1 p2-1a_2d;~2] 
(4.4') 

= Kr [1 + (y- 1t1 (2- k-1)]. 

Here k =at/a. Comparing (4.1) and (4.2), we ob-
tain 

(4.5) 

where TJ is a coefficient on the order of unity. If, 
for example, we can neglect the change in temper
ature with time, then 

[ 
• 2 (d'a2) -1]-1 'lj=y l+(y-1)2a dt2 · (4.5') 

For a weak shock, when the pressure in the 
channel can be considered equal to the pressure 
of the undisturbed gas p0, we get from (2.3) in
stead of (4.4) 

Po27.2a 3ay l(y- I) = J2 I a. (4.6) 

Equation (4.5) retains its form, but the coefficient 
TJ will be different. For example, if we neglect 
the change in temperature with time, then we have 
simply TJ = 1 in place of (4.5). Equations (4.4), 
(4.5),_together with (4.3) and (3.5), (3.11) allow us 
to find all the parameters of the channel. 

Let us consider the channel in air. The conduc
tivity u ( T) for air in the temperature range of 
interest to us changes comparatively slowly (see 
Sec. 3) and, by (2.4), can be taken to be approxi
mately u = 2 x 1014 sec - 1• This is supported by 
the experimental data. If, making use of refer
ences 3 and 4, we take the electrical conductivity 
into account, then it is shown that within wide lim
its of change of the parameters of the discharge, 
u does not depart appreciably from this value. 
Assuming Kp;, 0.9, y = 1.2 and J"' t, we get 
~ = 4.5. For these values of u and ~. we get 
for the channel radius (from Eq. (4.4) 

(4.7) 

Here a is in mm, J in kiloamperes, t in Jl sec, 
and we take as the density unit the density of the 
air at atmospheric pressure, 1.29 x 10-3 g/cm3. 

The experimental values of the radius4 for a 
discharge voltage of 15 kv and capacitance C = 
0.15p,f, at 0.3, 0.5 and l.Op,sec, arethefol
lowing: for a coil inductance of L = 2 p,hy (which 
corresponds to j = V/L = 7.5 x 109 amp/sec): 
0.65, 0.95, and 1.55 mm, respectively; for L = 

• 9 
12 ( J = 1.25 x 10 ), 0.33, 0.50 and 0.80 mm, 

respectively; for L = 64 (j = 2.4 x 108 ), 0.18, 
0.25 and 0.40 respectively. The corresponding 
values computed from (4.7) are 0.67, 1.0 and 
1.62 (for L = 2); 0.35, 0.57 and 0.99 (for L 
= 12 ), 0.21, 0.32, and 0.58 (for L = 64 ). The 
agreement is excellent. A certain saturation at 
larger self inductances and values of the time 
is explained by the fact that (4.4) does not take the 
initial pressure into account. If this were done in 
(4.1), for example, by means of the interpolation 
p = Kpp0a2 + p0, then the agreement with experi
ment would be improved. 

The spark discharge in air has also been in
vestigated experimentally by Norinder and Kar
sten. 12 The values of the radius computed by ( 4. 7) 
agree satisfactorily with their experimental data. 

The temperature in the channel can be calcu
lated by (4.5) and (4.3). However, this computation 
is difficult in practice because of the absence of 
reliable data on the radiation of air. We shall only 
put down some estimates. The coefficient TJ is 
on the order of unity. For the same discharge 
which was considered previously, 3 at t = 1 p,sec, 
the Joule heat (for L = 2, 12 and 64 p,hy) is QJ = 
1.7 x 1013, 3 x 1012 , 4.2 x 10 11 erg/cm-sec, re
spectively. For L = 64, using (4.5), we obtain 
T = 3.7 ev, while all the heat is transferred by 
the electronic conductivity; we can neglect radia
tion ( QR"' 1010 erg/em-sec). For L = 12, the 
thermal conductivity and radiation have the same 
order of magnitude, but for L = 2, the heat is 
primarily conveyed by radiation. In the second 
case, the radiation is much greater than in the 
first, because of the high density of the plasma, 
but also because of the large value of the cross 
section of the channel. Taking T = 4 ev, we get, 
making use of (2.2) and (3.5), ni = 3.3 x 1017 , in 
the first case and ni = 9 x 1017 in the second. 
These quantities greatly exceed the experimental 
value of 1017 obtained by Dolgov and Mandel'
shtam.ll According to their experimental data, 
T ~ 4 ev and Z ~ 2. Substituting these values 
in (2.5) and (4.3) we get QT = 0.6 x 1012 erg/em
sec. We estimate the radiation crudely by using 
(2. 7) with an effective charge equal to Z + 1.5 = 

3.5. This gives QR = 1.6 x 1012 for L = 12 and 
QR = 4.4 x 1013 for L = 2. These results corre
spond in order of magnitude to the experimental 
values of QJ; however, the accuracy of the esti
mates is not very great because of the very approx
imate method employed in considering the radiation 
of air. Therefore, the role of other possible mech
anisms of heat transfer, for example, radiant ther
mal conductivity, is not completely clear. 

In conclusion, let us consider the limits of ap-
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plicability of the theory developed above. 
The lower limit is determined by the fact that 

for appreciable ionization, the temperature in the 
channel ought to be larger than ( approximately ) 
one electron volt. For this, the current ought to 
be not too small and should increase after a rather 
short time. The corresponding estimate can be 
obtained from (3.13) for hydrogen and from (4.3) 
and (4.4) for air. Neglecting the weak dependence 
on the density, and disregarding radiation, we ob
tain a condition for both cases, which is very 
rough: 

(4.8) 

The upper limit is determined by the require
ment of smallness of the magnetic pressure H2/87l" 
= J 2/27l"a2c2 in comparison with the gas-dynamic 
pressure. Using (3.5) and (4.4), we get 

H 2 I 8rcp = (J I J0 )'''• Jo = (2'1' K~' I ~r:''·) (c3p~· I a), (4.9) 

where J 0 is the current at which the magnetic 
forces begin to be appreciable. For hydrogen, 
setting u=u1T3f2, g=(53/T) 1/ 2, andusing(2.4), 
we get 

(4.10a) 

For air, substituting a fixed value of the conductiv
ity u = 2 x 10 14 , and g = 4.5, we get 

J0 (air) = 250 p~·· (4.10b) 

The current is expressed in kiloamperes, the time 
in J.L sec,. and the density in units of 0.9 x 10-4 for 
hydrogen and 1.29 x 10-3 for air, both in g/cm3• 

Both criteria are well satisfied for typical cases 
of lightning in the atmosphere. For example, let 
the current of the lightning be 30 kiloamperes and 
the time of current flow 200 J.L sec; then we get 0. 55 
« 30 « 250. The form of the lightning current is 
not linear, so that the coefficient in (4.7) must be 

changed, but if (4.7) is used for a rough estimate, 
then we get, in the case considered, for the radius 
of the lightning channel a ~ 4 em. 

In conclusion, I express my deep gratitude to 
M.A. Leontovich, V. I. Kogan, D. A. Frank-Kame
netskii and S. L. Mandel'shtam for useful discus
sions, and to Z. D. Dobrokhotov and G. A. Mikhailov 
for help in setting up the program for machine com
putation and for carrying out the computations. 
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