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The problem of solving the kinetic equations for the slowing down and diffusion of neutrons 
and for the propagation of y -ray quanta is reduced to a less complicated problem of multiple 
integration. An exact solution of the kinetic equation (stationary and also nonstationary) is 
found in the form of a sum, in which the 1<. -th term is an approximately 3t< -fold integral, 
which has as its meaning the probability for the transition of a particle from one point of its 
phase space to another after 1<. collisions. In the particular case of the slowing down and 
diffusion of neutrons with constant mean free path, it is shown that this exact solution, which 
depends on all six variables (the three space coordinates and the three components of the 
momentum) reduces to simple quadratures and sums. 

1. STATEMENT OF THE PROBLEM 

THE stationary kinetic equation for the slowing 
down of neutrons is (cf. reference 1): 

u 

[l (u) Qgrad + IJ 'Y (r, Q, u) = ~ du1 ~ d2Q1'Y(r, Q1 ui) 
0 

(1) 

Here '11 ( r, 0, u) is the number of collisions per 
unit volume of the phase space at the element 
d3rd20du; u = ln ( E/E0 ), with E the energy of 
the neutron and E0 a certain energy taken as a 
unit; 0 is the unit vector of the direction of the 
momentum; h(u) =l(u)/ls(u), with l the mean 
free path and ls the mean free path against scat
tering; f ( 0 • Ot. u) is the scattering function, 
which in the case of symmetry about the center of 
mass is given by 

""C M + 1 -u' {Q·Q [M + 1 -u/2 M -1 uJ•]} .LJ M Sr.M e o • 1 - - 2 - e - - 2 - e " , 
M 

where M is the mass of the nucleus in units of 
the neutron mass; lsM is the free path against 
scattering by the element of mass M. 

It is required to find the Green's function G 
of this equation, i.e., a function such that 

'Y (r, Q, u) = ~ d3r1d2!~1du1G (r1, r, QI> Q, u1, u) Q (r1, Ql, u1). 

(2) 

The integration is taken over the entire six-dimen-

sional phase space. Substituting Eq. (2) into Eq. (1), 
one verifies without difficulty that G satisfies the 
following equation: 

u 

= ~ du 2 ~ d22 2G (r1 , r, !~1. Q2, U1, u2) 
0 

(3) 

In obtaining this equation one must change the 
order of integration of the variables with indices 1 
and 2. 

Equation (3) is an integra-differential equation. 
It can be transformed into the purely integral equa
tion 

G (r1, r, QI> Q, u1 , u) = 0 0 (r1 , r, 2 1 , Q, U1o u) 

+ ~ du 2 ~· dua ~ d2Q2 ~ d2Q3 ~ d3r2Go (r2, r, Q2, Q, u2, u) (4) 
0 

where G0 ( r 1, r, 01> 0, u1, u) satisfies Eq. (3) 
without the integral term in the right member 

= o (r1- r) o (Q1- Q) o (u1 - u). (5) 

For the proof one must substitute the expression 
for G in the right member of Eq. (4) into the left 
member of Eq. (3) and note that the gradient oper
ator acts only on the coordinates without indices. 
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Equations (5) and (4) can be given a simple 
physical interpretation. The quantity G0 is pro
portional to the probability of transition of a neu
tron with the momentum direction 0 1 and energy 
corresponding to u1 from the point r 1 to the 
point r, with its momentum direction changed to 
0 and its energy variable to u, without collisions. 
Stated more simply: the neutron has passed from 
point i of phase space to point 0 without scatter
ing or absorption [ G0 ( i, 0)]. 

The quantity G ( i, 0) is proportional to the 
probability (hereafter we shall simply say is the 
probability) of transition of the neutron from the 
point i to the point 0 with the occurrence of any 
number of collisions. According to Eq. (4) this 
probability is equal to the sum of the probabilities 
of the following events: 1. The neutron has passed 
from i to 0 without having any collisions ( the 
first term G0 ), 2. The neutron, having come from 
i, and after having any number of collisions, was 
at the point r 2 with momentum direction 0 3 and 
energy variable u3 [factor G(r1, r 2, 01> 0 3, u1, u3 )]. 

At this point it was scattered or absorbed, with 
transition to the point 2 [factor h ( u3 ) f ( 0 20 3, 

u2 - u3 ) ]. After this it has passed without colli
sions from the point 2 to 0 [factor G0 ( 2, 0) ]. 
The integration is taken over all the intermediate
state variables r 2, 0 2, 0 3, u2, u3• The function f 
assures that the laws governing the scattering are 
satisfied. 

Equation (4) is thus a recussion formula that 
relates the probability distribution after each 
K -th collision with the (K + 1) -th one. 

2. THE EXPRESSION FOR THE GREEN'S 
FUNCTION OF THE KINETIC EQUATION 
IN TERMS OF MULTIPLE INTEGRALS 

To solve the integral equation (4) we shall em
ploy the usual method of successive approximations. 
This makes it possib~e to find successively the pic
tures after 0, 1, 2, .•. K collisions (functions G0, 

G1o ... , G K, respectively). Each subsequent G K+t 
is found by integrating the product of the preceding 
functidn by the kernel G0• GK can be called a par
tial probability, since it plays the same role for 
the kinetic equation that a partial wave does for 
the wave equation. 

Let us first find G0 from Eq. (5). Inserting 
o ( r 1 - ,r) in the form 

o(r1- r) = 8~3 ~ d3k exp ( -ik (r1- r)), 

and dividing by the operator ( zo grad + 1 ) ' we get . 

- - , , 1 \ exp (-ik (ri- r)) d3k 
G0 (1,0)=o(QI-Q)o(ui-u)81t3) i+ilk-!:l · 

(6) 

Performing the integration with respect to one of 
the components of the vector k (for example, kx) 
by means of the theory of residues, we get 

y(oc) ={I for oc>O, 
0 for oc<O. 

(7) 

From this it can be seen that Go has a singularity 
on the straight line 

According to Eq. (8) the vectors ( r - r 1 ) and 0 
are strictly parallel. Since I 0 I = 1, this means 
that 

(9) 

Equation (7) can then be rewritten in the form 

a (I O) = exp u-t 1 r,- r 1) 0 (Q _ Q) 
o ' l I rl - r lz 1 

x o (u1 - u) a (Q - ~). I r1-r I 

In these transformations repeated use has been 
made of the property of the o function, 

(10) 

o [f (x)] = ~ f (x- Xs) / f' (xs); f (xs) = 0. (11) 

It can be seen from Eq. (10) that G0 contains a 
dependence of the form R -2 exp ( R/l ) , which is 
characteristic of a transmitted beam, as was natur
ally to be expected. 

It must be remembered that a o function of 
unit vectors factors into only two o functions, cor
responding to the number of independent compo
nents. For example, 

where p,, p,1 are the cosines of the polar angles 
and <P, <P 1 are the azimuthal angles. 

To solve Eq. (4) it is more convenient to insert 
in it the function G0 in the form (6), not in the 
form (10). We obtain: 
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u 

a(i, 0) = Go(i, O)+ 8~3~dua ~d22a ~d3r2h(ua) G(rl,r2,Ql,Q3,ul,u3)f(Q·Qs,U-Ua)~d3k exrr;-:i~~2.;-r)] (12) 
0 

Carrying out a straightforward calculation, we find: 

G = ~ \ d3k L_(O·O., ,u- u,) exp f -ik (r,- r)] h (u,) 
1 81ta J (1 + ilk·O) (1 + il1k·01) • 

Here and in what follows use is made of the fact 
that the integration with respect to r 2 can be per
formed at once and gives o ( k1 - k), so that the 
integral with respect to k will still remain a 
triple integral. Furthermore, we have written as 
a simplification 

ln = l (un); l = l (u). 

Continuing the process of calculating the "par
tial probabilities," we find 

u U2 Ux-l 

G" = 8~3 ~ d3k ~ du 2 ~ d22 2 ~ du3 ~ d2Q3 • • • ~ du>< ~ d2Q>< 
0 0 0 

. h (tl!) f (0•0.2, u- u2) f (0.><·01 ,u><- u1) 
x exp [ -tk (r1 - r)] (i + ilk·O.)(i + iltk·O.,) 

(13) 
K=O 

This is indeed the final form for the Green's func
tion of the stationary kinetic equation. We note that 
nowhere in the above calculations has use been made 
of the concrete form of the function f ( 0 · 0 1, u- u1 ) , 

nor of its dependence on any combination of its ar
guments. Therefore the formulas (13) are also 
valid when f = f ( 0, 01> u, u1 ). 

Each term of G is positive, according to its 
physical meaning, so that the series (13) is a 
series of positive terms. Thus the problem of 
solving the kinetic equation has been reduced to 
a problem of multiple integration. Well developed 
procedures of approximate integration exist for the 
calculation of multiple integrals. We once again 
emphasize the fact that Eq. (13) provides an exact 

xn 
0:=2 

solution of the kinetic equation, valid for arbitrary 
energies and distances from the source, and for 
any form of the function f. 

3. GENERALIZATION TO THE CASE OF THE 
NONSTATIONARY KINETIC EQUATION 

In this case the operator ( lO grad + 1) in Eq. 
(1) is replaced by 

r l (u) a ) (-v-at+ l (u)Qgrad +I . 

The integral equation for the Green's function 
takes the form 

u, 

G(t1 -t,l, O)=Go(t1 -t, I, O)+~du2 ~ du3 ~. d222 ~d22a 
0 

(14) 

where G0 satisfies the equation 

( z a ) - -vat + lQ grad + 1 G0 (t1 - t, 1, 0) 

= 0 (tl- t) 0 (rl- r) 0 (Ql- Q) o(ul- u). (15) 

Representing o functions as Fourier integrals, we 
get 

X o (r1 - r -- t, ~- t 2) exp( _I\:; t I), (16) 

-c=l(u)fv. 

Equation (16) expresses the physically obvious fact 
that G0 is different from zero only on a segment 
of a straight line for which the equations are 

As before, the vector 0 is parallel to the vector 
r 1 - r, but the length of the segment depends on 
the time. 

The method of successive approximations gives 
at once 

G (tl- t, !, 0) = ~ G"(tl- t, I, 0). (17) 
X=O 
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4. SOLUTION OF THE KINETIC EQUATION FOR 
THE PROPAGATION OF GAMMA-RAY QUANTA 
AND THE DIFFUSION OF THERMAL NEUTRONS 

The transport equation for y -ray quanta is 

E, 

(lKQ grad+ 1) '¥ (r, Q, E)=~ dE 1 ~ d2Q1h (E1 ) 

E 

where -.]i ( r, 0 , E )/l ~ is the number of quanta at 
the phase point 0 ( r, n, E ) . The energy is ex
pressed in units of the rest mass of the electron. 
l 0 is the mean free path against Compton scatter
ing, lp is that against the photoelectric effect, 

h = lplc/ (lc + /p), 

and M ( 0 • l'lt, E, E1 ) is the Klein-Nishina differ
ential cross section for scattering of a quantum 
from the state l'lt. E1 into the state 0, E. 

The analogy between Eq. (18) and Eq. (1) is al
most complete. Therefore the Green's function of 
Eq. (18) is given by Eqs. (10) and (13), if one makes 
in them the replacements 

UCI. E, 

[-?lc; u=0--+E0 ; u--+E; f--+M; ~--+~. (19) 
0 Erx 

It is also easy to write down the Green's func
tion for the diffusion of thermal neutrons. In this 
case the kinetic equation does not contain the en
ergy (cf. reference 2). Therefore in the formulas 
(13) one must omit all the integrations over ua, 
so that, for example, 

G~r (i, 0) = 8~3 ~ d3k ~ d2Q 2 ~ d2Q3 ••• ~ d2Q" 

h"f (!l•02)f (!l"•01) l<-1 f(!la·Orx+1) 

X (1 + ilk·OX1 + ilk•01)(1 + ilk·!l) Il1+ ilk·!lrx • 
a=2 

(20) 

5. CASE OF SLOWING DOWN AND DIFFUSION 
OF NEUTRONS IN A MEDIUM IN WHICH THE 
MEAN FREE PATH IS CONSTANT 

The method of solving the kinetic equation by 
means of partial probabilities, which has been ex
plained and applied to all the equations of trans
port of neutrons and y -ray quanta in Sees. 1 to 4, 
has reduced the problem of obtaining the solutions 
of these equations to problems of multiple integra
tion. For these latter problems there exists well
developed procedures for both exact and apprqxi
mate solution. 

As an example, in the present section we shall 
find the exact spatial and energetic distribution of 
neutrons slowed down in a medium in which the 

mean free path is constant, and in which the nuclei 
scatter the neutrons symmetrically in the center
of-mass system. The case of the diffusion of ther
mal neutrons is obtained as a special case of this 
one. As is well known, no method hitherto pre
sented has made it possible to find the exact solu
tion of the kinetic equation for this case. In per
forming the multiple integrations we shall employ 
the usual operator method and expansion in series 
of Legendre polynomials. 

We expand all the scattering functions in series 
of Legendre polynomials 

00 a (a-m)! m m . 
= ~ ] Sm (a+ m)! Aa (u- U1) Pa (fl.) Pa (f1.1) COS m (cp- cp1), 

a=O m=O 

{ 1 for m = 0, 
Em= 2 for m=f,O; 

PT" ( JJ.) are the associated Legendre polynomials; 
JJ.a = k0 • Oa is the cosine of the angle between the 
vectors Oa and k; k0 = k/lkl; cp is the azimuthal 
angle of Oa in the plane perpendicular to k. 

This expansion at once makes it possible to sim
plify the multiple integration with respect to the 
logarithmic energy variables in the case in which 
l does not depend on u and either there is no cap
ture of the fast neutrons [ h ( u) = 1) , or else 
h ( u) = const. 

In fact, we write 

u U2 Ux-1 

W = ~ du 2 ~ dua. . . ~ duxAa (u---: U2} Ab (u2- ua) . · . 
0 0 0 

... Ag (ux-1- Ux) Ah (ux- u1)· 

We perform the Laplace transformation 
00 

W(p) = ~e-PuWdu. 
0 

(22) 

Changing the order of integration over u and u2, 
we get 

00 00 u. 

W (p) = ~ du2 ~ due-pu ~ du3 • •• 

0 Ut 0 

Ux-1 

~ duxAa (u- u2) ... Ah (ux- u1) 
0 

oo c:o u "x-1 

= ~ Aa (t2 ) e-P1•dt2 ~. du2e-pu, ~ dua . . . ~ dux 
0 0 0 0 

Continuing this process in the same way and writing 
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00 

Aa (p) = ~ e-PuAa (u) du, (23) 
0 

we get 
"' 

W (p) = Aa (p) Ab (p) ... Ag (p) ~ e-pu><Ah (u><- u1) dux 
0 

= Aa (p) Ab (p) ... Ag (p) e-pu,Ah (p). (24) 

Thus instead of the multiple integrals with respect 
to the ua we have a single integration: 

c+lc:o 

L -1 (p, u) = 2~i ~ ePudp, (25) 
c-loo 

where, as usual, the straight line Re ( p) = c is 
drawn to the right of the singular points. 

To avoid misunderstanding we remark that just 
as in the kinetic equations, the integration over u 
starts at zero in Eq. (23), too. This means that the 
maximum energy of the neutrons from the sources 
is taken to correspond to zero (in the opposite case 
the integration would be taken from - oo). There
fore we always have 

Aa(u) 0 for u<O. 

We now go on to the integration over the solid 
angles. After the series expansion and the Laplace 
transformation, there remain integrals and sums 
of the form 

oo min (f(.h) • 

" " 47ti m Am m m ( I )Pm ( ) ( )• = LJ .L.J ----v;-smAg (p) " (p) Pg (ttx-1) Dr;, ki " fl-1 cos m 'P><-1- 'P1 , 
g,h~o m~o 

(26) 

where the quantities 

D"', ( ) = D'h ( ) = fP;;' (y) Q'h (y) for g <, h, 
" y g y \Q'; (y) P'h (y) for g -;ph 

are calculated in the Appendix. Here we have written 

A; (p) = Ar;(P) (g -m)! /(g + m)! (27) 

Carrying out successively the integrations over 1-LK-1> 1-LK-2, ••• !-L2, we get: 

00 min (a,h, ... ,h) 
~ ~ 1 ~ 

G"" (I, 0) = 87t3 .L.J ~ C 1 (p, u- u!) ~ d3k exp [- ik (r1 - r)] smA;;' (p) A~' (p) ... A;' (p) A'h(p) 
a,b, ... ,h~o m-o 

(28) 

It must be remembered that the angles cp and cp 1 

are measured in the plane perpendicular to k, so 
that cp- cp 1 is the angle between kxn and kx0 1• 

Pd (k0 • 0 1 ), interchange the summations over the 
upper and lower indices, and introduce the matrix 
notation: 

The expression (28) can be considerably sim
plified if we expand the fractional quantities de
pending on 0 and 0 1 in series of Pc ( k 0 • 0) and 

li ADm II - is the matrix of the quantities 

VA~ (p) A; (p) o:1 (i I kl). 

Then 

Gx(i, 0) = ~ ~ ~ 4 ~;:.) 5 L - 1 (p, u - u1) 'i d3k exp [- ik (r1 - r)] V + 1) (2b + 1) P;;' (k0 • 2) P"bm(k0 · 2 1) 

m~o a~m b-m .) A:' (p) A;;' (p) 

( 47ti )"+1 (II AD"' 11"+1) ( ) X lk 1 abcosm Cfl1- cp. (29) 

Summing all the GK and using the property of the geometric progression, we get 
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CX> CX> 00 

G(I,O)= ~a"=~ ~ 
iem (2a + 1) (2b + 1) 

2 (27t)• L _, (p, u- ul) 
x=o m=oa,b=m 

~ 3 . <D;;'b (p, k, I) P;;' (k 0·0) P't;m (k0-01} cos m (<p-<p1) 
X dkexp[-tk(r1 -r)]· · 

. lk (A;;' (p) A;;' (p))'f, ' 
(30) 

Here the matrix of the fraction must be understood 
in the sense of a series expansion. In addition we 
have used the fact that Eq. (29) is also valid for 
K = 0. To prove this one expands the expression 
for G0 obtained from Eq. (16) in a Laplace integral 
and Legendre series. 

We now recall that in the particular case of scat
tering symmetrical in the center-of-mass system 
one has the formulas (cf. reference 1) 

2p+2--M+(2p+2+M)exp[-(p+ 1)uM]. 

X (2p + 1) (2p + 3) ' ' ' ' ' 

"M 

Aa(p)= ~CM (2a+;~~~+ 1 )" ~ e-<P+1l"Pa(XM(u))du; 
M o 

X ( ) - M + 1 -U/2 M -1 U/2· 
M u --2-.e --2-.e , 

Thus Eqs. (30) and (31) give the Green's func
tion of the kinetic equation for the slowing down of 
neutrons. They are of simple structure and are 
written in vector form. We note that the functions 
GK given by Eq. (29) are interesting in themselves, 
since they are the probabilities for K collisions. 
In particular, it will be shown below that in the case 
of atoms of a single kind 

G"_ 0 for x< (u- u,)fuM. 

It is also easy to write down the Green's func
tion for the diffusion of thermal neutrons. Using 
the recipe from Sec. 4, we quickly obtain 

00 00 

"" "" em (2a + 1)(2b + 1) \ 3 . 
£.J £.J 2 (27t)• Jdkexp[-tk(r1 -r)] 

m-o a,b-m 

ct>:;'b (k, l) =(II ADm II I (I- 47!h li ADmll))ab. (32) 

(31) 

Suppose that in an infinite homogeneous medium 
there are sources S ( r, ~. u). Then the solution of 
the kinetic equation for slowing down is written in 
the form 

oo oo c+ioo 
"" "" em (2a + 1) (2b + 1) \ r 3 

'P'(r,Q,u)=.c.J £.J 47t J Jdk 
m=O a,b=m c-ioo 

exp (pu + ikr) n-.m ( k l m sm k ) 
X V '<'ab p, , ) Pa (k0·Q) b (p, , <p ; 

A"' (p) lk 
a (33) 

00 

S'; (p, k, rp) = 2~. ~ du1 ~ d3r1 ~ d2Q1S (r1, Ql, u1) 
0 

exp [- pu1 - ikr,] -m ·Q 
X V - Pb (k0 1)cosm(rp-rp1). 

A;;'(p) 

In the particular case of a point source which is 
isotropic and monochromatic and is located at the 
point ru, 

s =a (r- ru) a (u), 

by expanding exp ik ( r - ru) in .a series of prod
ucts of Legendre polynomials and Bessel functions 
(cf. reference 3) and integrating over the surface 
of a sphere of radius k we get: 

00 

"" ( 0 ) _ "" (2a + 1) i r r, ,,, u - £.J 21t"l 
a=O 

"'' 
X L-l(p,u) ~ Vkdk [lru-riA~(p)Ao(P) r (34) 

X fl>ao (p, k, l) Pa ( Q I::=: I) la+'f, (k I ru- r 1). 

The arguments of the Legendre polynomials and 
Bessel functions correspond to the fact that \II 

depends only on the angle between the momentum 
and the radius vector drawn from the source, and 
on the magnitude of this vector. The term a = 0 
gives the part of \II that does not depend on the 
direction of the momentum: 

"' - i V2 L-1 ( ) f dk 
T 0 - 21t2/ p, U J 

0 

sink I ru- r I 
I r u- r I Ao (p) fl>oo (p, k, l). 

(35) 

6. EXAMINATION OF THE SOLUTION AND 
SPECIAL CASES 

The function \110 given by Eq. (35) is a sum in 
which the K -th term is of the form 
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'¥ iY2 L_1( )f sinklr--rul (4ni)" iVf f sinklr-rul (4ni)"{[ (1)]"+1 
ox= 2n'l p,u) Ao(P)Iru-rl -lk (IIADII"+1)oodk = 2n•L L-1(p)J Ao(P)Iru-rl lk Ao(P)Qo Tk. 

0 0 

(36) 

Here we have written out several terms of the matrix element, arranged in the order of decreasing size 
near k = 0, The integrands can easily be summed: 

• - ~ - i V2- -1 r sin k I r u - r I dk { Qo (i I lk) 
\{' o - LJ 'Pox -~ L (p) J 1 r - r I 1- (4ni Ilk) A 0 (p) Q0 (i Ilk) 

x-o o u 

4ni A1 (p) f Q1 (i Ilk)]' 
lk (1- (4nillk) A 0 (p) Q0 (ilkl)]2 

+ ( 41nki ) 2 A0 (p) [A1 (p)]2 (Q1 (i 1 lk)]• 4ni A2 (p) [Q 2 (i 1 kl)]" 
[1- (4ni Ilk) A 0 (p) Q0 (i I k/)] 3 -lk [1- (4ni Ilk) A 0 (p) Q0 (i I lk)] 2 + .. } (37) 

The first term in Eg. (37) is the only one in the 
case of scattering that is symmetrical in the labo
ratory reference system. It agrees with the solu
tion of Placzek and Volkoff given in reference 1 
(single-velocity approximation), as one verifies 
without difficulty by carrying out the integration in 
the complex plane. The result consists of the resi
dues at singularities given by the equation 

I _ 4n~ A (p) tan-1 kl _ O 
lk 0 kl -

and the integral around the cut ( i/l, ioo). This 
procedure will be carried out below in general 
form for the partial probabilities. If we suppose 
that only A0 ( p ) and At ( p) are different from 
zero, then all the terms containing At ( p) can 
also be summed easily. It can be seen from Eqs. 
(36) and (37), however, that the term containing 
[At ( p) }2 is already of the same order as the 
term in A2 ( p ) . 

The procedure of operating with matrices in 
the partial probabilities makes it possible to avoid 
cumbersome calculations with infinite determinants, 
such as occur, for example, in Wick's method (cf. 
references 1 and 4). 

It is preferable, however, to use not the expres
sions (37), which are relatively complicated, but 
the partial probabilities (36), after first trans
formed them to a more convenient form. For this 
purpose we convert the integral over k into a 
complex Fourier integral. It is easy to do th~s if 
we note that 

(il AD (i I kl) !1"+1)00 = (- I )"+1 11 AD (- i I kl) li~o+ 1 , 

in view of the fact that 

P a (i I kl) Qb ( i / kl) = - P a (- i I kl) Qb (- i / kl) e-(a-b) rri 

and the circumstance that the matrix elements con
tain sums of term.s of the form DoaDabDbc ... Dho· 

After this, noting that the points k = ± i/l are 
branch points and there are no other singularities, 
we transform the integral along the real axis into 
an integral along the cut ( i/l, i oo) and introduce 
the new variable x = i/kl. The result is 

, • i V2 _1 ~1 (4nx)"exp (-1 ru- r I I lx) 
pox = -4 •t L (p' u) dx ';1 ( ) I I rr x 0 pru-r, 

0 

c- 1 

X (II AD (x- iO) il"+t -II AD (x + iO) 11"+1) 00 = ~n:l ~ dx 

XU x+t( ~0(~)) 

+ L -1 (p, u) [A0 (p)J"-1A1 (p) [B (x)l"-1[x2 [B (x)F 

X Ux+t ( ~o(~))- 2xB (x) Ux(-~0(~)) 

+ Ux-1( ~0(~/)] + · · ·}, 
where UK ( x) = sin ( K cos-t x) are Chebyshev 
polynomials of the second kind and 

Dab (x +iO) = Pa (x) [ Qb+ fPb(x)] for a~ b; 

B (x) = V Q~.(x) + 7t2/4. 

0 

(38) 

It is easily shown that the integrand has a sharp 
maximum at x = 1. The maximum is due not only 
to the presence of the exponential, but also to the 
logarithmic singularity at this point, B ( 1) = oo, 
It is easy to see that the first term dominates the 
others, since near x = 1 it is larger than the others 
by at least a factor ( ln oo )2 • 

- As for the inverse transformation of the coeffi
cients that depend on p, this is easy to do by using 
the appropriate formulas given in reference 5. For 
example, in the case of a single element 
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X 

X ~ ( ~) (- 1 )n (u- nuM)><-Iy (u- nu,ti); 
n-o 

u 

L -I (p, u) [A0 (p)J><-IAI (p) = ~ A0 (ui, x) AI (u -- ui) dui. 
u-uM 

The first of these formulas agrees with the well 
known relation (cf. reference 1) for the energy 
distribution after a given number of collisions. 
Marshak's review article also gives the extension 
to the case of a mixture of elements, and asymptotic 
values of the function A 0 ( u, x), which has a sharp 
maximum at K = u/2uM. It is not hard to show by 
the method of mathematical induction that for K < 
u/uM, i.e., when the summation in Eq. (39) is not 
broken off, A0 ( u, K) = 0; this is physically ob
vious. 

Thus Eqs. (37) or (38) and (39) give expressions 
in quadratures for -.JT0 and -.JioK· It is clear that 
for the value of K equal to the average number of 
collisions needed for slowing down to a given energy 
one will find a maximum of -.JioK· Therefore it is 
sufficient to include a small number of the -.JT0 

which are in the neighborhood of this average K. 

Owing to the rapid decrease of the integrand (par
ticularly for large K) the integration does not in
volve much labor. 

From the structure of the formula (36) one can 
see how the results are to be extended to the case 
of a nonconstant mean free path. In first approxi
mation it is obvious that we are to make the re
placement 

7. COMPARISON OF EXISTING METHODS; 
SUMMARY 

In methods existing hitherto simplifying approxi
mations have been introduced directly into the equa
tion. Wick's method1•4 is based on expanding the 
functions f and -.v in series and obtaining an in
finite system of equations. One then determines 
approximately the zeros of the infinite determinant 
in the denominator of the integrand. In the one
velocity method1 and in the considerably better de
veloped method of Temkin6 only the scattering func
tion is expanded in series (which is broken off after 

' a certain term ) . In reference 6 the main part of the 
solution is found, corresponding to spherical sym
metry of the scattering, and then a perturbation 
method is given for finding corrections. 

The main shortcomings of these methods lie in 
the fact that their formalism (1) is not related to 
the physical peculiarities of the phenomenon, and 
(2) does not make it possible to write down an ex
act solution in the form of combinations of known 
functions and operators. 

The advantage of the method of partial probabil
ities lies in the fact that it introduces explicitly a 
new physical variable - the number of collisions 
of a particle with nuclei of the medium. The for
malism has a clear physical meaning, connects 
the entire problem with the theory of probability, 
and reduces it to a problem of multiple integration. 
The method deals with the actual physical picture 
of successive transfers of neutrons or 'Y -ray 
quanta. It makes it possible to write down in a 
compact form the exact solution of the kinetic 
equation as a function of all six variables, and 
then, by the use of the available apparatus of mul
tiple integration, to bring it into a simple form 
convenient for calculation. 

The entire method set forth above is in principle 
capable of being applied also to boundary-value 
problems. For this purpose it is necessary to 
choose the zeroth-order partial probability in 
such a way that it satisfies the boundary conditions. 

APPENDIX 

We shall show that 

Dm ( ) = ..!_ r P': (x) P'j) (x) dx = {P':) (x) Q'/) (x) a~ b 
ab y 2 JI Y- x Q'; (x) P'/)(x) a~ b. 

(A.1) 

where y is not on the segment ( - 1, + 1 ) and 

Q': (y) = (y2- 1 )m/2dmQa (y) / dym 

are associated Legendre functions of the second 
kind (cf. reference 7). 

To obtain the proof we first calculate 

Dm ( ) -..!_~I P': (x) P'::, (x) d (A.2) 
rna Y - 2 j Y- X X. 

-I 

Integrating by parts and differentiating with respect 
to y, we get: 

_!!___ D'::ta (y) =- 2m2-
1 (a+ m) (a-m+ 1) DZ:=f.a (y). 

dy 

(A.3) 

We use the relation 

! [(1-x2t 12P';(x)] 

=(2m -1) (a+ m) (a-m+ 1) (1 - x2)<m-I)/2P';;-I (x), 

and the obvious fact that for any value of m 
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D;;:a(oo) = 0. (A.4) 

Equation (A.3) at once gives 

~ Dm ( ) _ (2m-1)!! (a+m)! Do 
dym ma Y - 2 (a-m)! oa 

=(2 -l)ll (a+m)! Q ( ) m . . (a-m)! a y . (A.5) 

Integrating Eq. (A.5) with the supplementary con
dition (A.4), we get 

0> 0> 0> 

D':.a(Y)=(2m-1)!! i~~:;; ~ ~ ... ~ Qa(Y)dmy 
y y y 

=(2m- 1)!! i~ ~ :~:. Q-;m (y) (y2- l)m/2 = P':. (y) Q;;' (y). 

We next take the case, with a ::::: m + 1: 

+1 m ) m 
Dm ( )=_!_ \ pm+1 (x pa (x) dx 

m+l. a Y 2 ) Y -X 

-1 

+1 
= 2m + 1 \ x P':. (x) P;;' (x) dx 

2 ) y-x 
-1 

+1 
= 2m 2+ 1 y ~ __ P_;;:_(_x)_P_::;;'_(_x)_ dx = P'/:,H (y) Q;;' (y). y-x 

-1 

Here we have used the orthogonality of the associ-

ated Legendre polynomials. Thus the theorem 
(A.1) is proved for b = m and b = m + 1. It is 
now easy to prove it for arbitrary a and b by 
the method of mathematical induction, by using 
the recurrence relation 

Pm ( ) 2a + 1 pm ( ) a + m m ( ) 
a+1 X = + 1 X a X - + 1 Pa-l X • a-m a-m 

1 R. Marshak, Revs. Mod. Phys. 19, 185 (1947). 
2 S. Glasstone and M. Edlund, The Elements of 

Nuclear Reactor Theory, Van Nostrand, 1952. 
3 G. N. Watson, A Treatise on the Theory of 

Bessel Functions, Chapter 4, Cambridge, 1945. 
4 G. Wick, Phys. Rev. 75, 738 (1949). 
5 Ditkin and P. Kuznetsov, CnpaBO'IHHK no 

onepaiJ,nonnoMy HC'IHCJienmo (Handbook of Opera
tional Calculus), GITTL 1951. 

6 A. S. Temkin, IlpnKJia;IJ;naa reO<pH3HKa (Applied 
Geophysics) 17, Gostoptekhizdat 1957. 

1 E. W. Hobson, Theory of Spherical and Ellip
soidal Harmonics. 

Translated by W. H. Furry. 
301 




