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IN Ref. 1 a model for excitons in alkali-halides 
crystals was constructed, according to which the 
exciton excitation was connected with the transition 
of one of the six p -electrons of the outer shell of 
the halide ion to the s -shell of the nearest alkali 
ions. Such a model made it possible, even without 
knowing the electronic functions, to calculate the 
change in polarization energy of the lattice, the 
half-width of the band of exciton absorption and its 
temperature dependence, the field mass of the ex
citon,2 and a number of other quantities character
izing, on the whole, an excited state, but not the 
ground state of the crystal. However, to evaluate 
the energy of an exciton transition and its proba
bility, the interaction cross section of excitons 
with different impurity centers, and so on, it is 
necessary to use the eigenfunctions of the system 
both in an excited, and in the ground state. 

In Ref. 3 the wave function .Y0 of the ground 
state of the system (corresponding to a non-excited 
crystal) was chosen in the form of an antisymme
trized product of electron functions at the various 
ions. To describe the exciton state of the crystal, 
the wave function .Y exc was also written as an 
antisymmetrized product of electron functions, in 
correspondence with the model considered in Ref. 
1, but it was assumed that in one, say the l-th, 
elementary cell one of the external p -electrons 
was absent from a halide ion, and at the six near
est alkali ions there was, with equal probability, 
an extra electron. 

Substituting .Y0 and .Yexc into the Hamiltonian 
of the system, which describes all possible electri
cal pair interactions between the electrons and the 
atomic nuclei of the crystal, we are able to evalu
ate the energies E0 and Eexc of the ground state 
and excited (exciton) state, respectively. Their 
difference determines the energy of the exciton 
excitation and can be transformed to the form 
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In this equation A and B are constants occur
ring in the normalization of .Y exc and equal to the 
overlap integrals of the s -functions of different 
alkali ions at distances a /2 and 2a apart, where 
a is the lattice constant. The index 1 refers ev
erywhere to an atom (ion) of the metal, and 2 to 
those of the halides: Et is the ionization energy of 
an alkali atom, E2 is the affinity energy of a halide 
atom, cp~t( p) is the wave function of a valence 
electron of an alkali atom in the l 1 -th elementary 
cell, cpl2 ( p) the p -electron function of a halide xa 
atom ( xa indicates the magnetic and spin quantum 
numbers), cp~ ( p) is the radial part of the p
electron wave Pfunction, and V~ ( p) is the potential 
of the ion s, l at a point with radius vector p. 

Equation (1) was numerically evaluated for an 
NaCl crystal. We took for V~ ( p) and cp~xa ( p) 
Hartree functions. 4 In the evaluation of E0 and 
Eexc we can use here these functions as the func
tions of the zeroth approximation because the over
lap integrals of even the nearest ions in the NaCl 
lattice are very small ( ,.... 10-2 ) . However, we can 
not use directly the Hartree function for the 3s -
electron of atomic Na since the corresponding 
overlap integrals are not small. For the functions 
cp{t ( p) we took thus the functions found by Tolpygo 
and Tomasevich. 5 After evaluating the polariza
tion of the electronic shells of the ions without in
ertial effects, we got for the energy of the exciton 
transiton in NaCl ~E = 7. 5 ev. The exchange 
terms which were not written down explicitly in 
Eq. (1) turned out to have practically no influence 
on the final value of ~E. 

Muto and Okuno6 have evaluated by numerical 
methods the energy of the exciton transition in 
KCl and NaCl crystals. They were, however, not 
able to determine the absolute value of the energy 
but only the distance of the exciton energy level 
from the bottom of the conduction band, the posi
tion of which was found in addition from experi-
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mental data. To get agreement with experiment 
they could essentially still use two parameters. 
The method proposed by us is free of these short
comings and enables us to consider the interaction 
of excitons with light and various centers. One 
can consider that the result obtained is in satis
factory agreement with the experimental value of 
AE determined from the position of the maximum 
of the exciton absorption band at A.= 1580 A 
("'7.85 ev). 

In conclusion we note that if we take the trans
lational symmetry of our problem into considera
tion we can write the wave function in the following 
form 

lTJ' N-'{, '\1 ( 'k I) lTJ'I 
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Expression (2) determines the exciton band, 
whose width is of the order of 
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e2 l 11' , , (3) 
X IP ~p'/ Cf'2y~ (p) Cf'1 (p) d"d" - exch. term. 

The width (3) of the exciton band is, as fol
lows from a numerical calculation, far smaller 
than A.E. This is, though, clear from the fact that 
in (3) functions occur referring to different halide 
ions and the integrals in (3) are thus much less 
than the analogous integrals in (1). 

Since the width of the exciton band is much 
smaller than AE, the energy of the excitation can 
be evaluated using the simpler function 'llexc as 
was done in the foregoing calculations. In those 
cases, however, where one is interested in effects 
which depend essentially on the form and width of 
the exciton band, it is necessary to use the more 
exact function (2). 
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THE latest measurements1- 3 of the longitudinal 
polarization of the electrons emitted in /3 decay 
show that the values of the longitudinal polariza
tion <a 11 > .in cases of allowed transitions and 
first-forbidden transitions in heavy nuclei are to 
good accuracy equal to vIc. As can be rigorously 
proved from the formulas4 for the longitudinal po
larization of the electrons from such transitions, 
a necessary and sufficient condition for the rela
tion <a 11 > = vIc is the existence of the follow
ing relations between the interaction constants 
conserving parity and violating its conservation: 

Cs=-C~, Cr=-C~, CA=C~, Cv=C~. (1) 

With these conditions the interaction Hamiltonian 
takes the form 

{2) 

and the electronic l/J function is involved in all the 
types of f3 interaction through only two components. 

Let us examine the consequences of the relations 
(1), i.e., of the two-component behavior of the elec
tron in the {3 interaction. When the conditions (1) 
:hold the expressions for the various effects in {3 
decay are decidedly simplified, so that in the case 
of allowed transitions there remain all told just six 
independent combinations of the constants and ma
trix elements: 

No= (j Cs 12 + i Cv 12) I MF 12 +(I Cr 12 +I CA 12) I Marl 2 , 

Nl =- Ajj' (I Cr 12+ [CAn I Mar 12 
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Here 

f..ii' = [j (j + 1)- j' (j' + 1) + 2]/ 2 (j + 1 ), 


