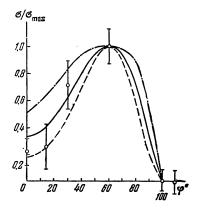
Mev in the laboratory system, at which a term proportional to  $\cos^4\theta$  apparently appears in the angular distribution. From the point of view of the resonance model of pion production in nucleon-nucleon collisions, this means that the p state of the system (isobar nucleon), which precedes the radiation of a meson in the d state, start assuming an important role. In this case the amplitude of the  $^1S_0 \rightarrow ^3S_1$  transition should be small, since this transition corresponds to the d state of the isobar-nucleon system.

Translated by J. G. Adashko 153

## ELECTRON-NEUTRINO CORRELATION IN THE NEGATIVE DECAY OF Na 24


N. A. BURGOV and Iu. V. TEREKHOV

Submitted to JETP editor December 20, 1957

J. Exptl. Theoret Phys. (U.S.S.R.) **34**, 769 (March, 1958)

Experiments for the determination of the electron-neutrino correlation through the use of resonant scattering of  $\gamma$  rays were proposed in Ref. 1. In the same reference, we calculated the dependence of the additional cross-section of the resonant scattering on the angle between the registered  $\gamma$  quanta for the  $\beta^-$ -decay of Na<sup>24</sup>. We have now carried out experiments using a gaseous source of Na<sup>24</sup>.

The experimental setup was similar to that used in Ref. 2, with certain modifications. We employed FEU-33 instead of FEU-19 photomultipliers, which made it possible to dispense with broadband amplifiers and reduce the resolution time of the coincidence circuit to  $3\times10^{-9}\,\mathrm{sec}$ . The source of  $\gamma$ -rays was metallic-sodium vapor containing radioactive Na<sup>24</sup>. The source was kept at a temperature of 1,000°, corresponding to  $\sim 1$  atmos vapor pressure of metallic sodium.



Dependence of the cross-section on the angle. Solid curve  $-\lambda=0$ , dotted  $-\lambda=-1$ , dash-dot  $-\lambda=1$ 

The diagram shows the results obtained. The average value of the correlation constant  $\lambda$  from one series of experiments is -0.3. The values of  $\lambda$  range from 0 to -1 with a probability of 80%.

The measured maximum resonant-scattering cross section at an angle of 120° between the registered  $\gamma$ -quanta was  $(3.1 \pm 0.4) \times 10^{-24} \, \mathrm{cm}^2$ .

The lifetime of the level is  $\sim 2 \times 10^{-13} \, \mathrm{sec}$ . The estimated average time between two collisions of the recoil nucleus in the source is  $\sim 10^{-11} \, \mathrm{sec}$ , and the recoil nuclei can therefore be considered free and the calculations made in Ref. 1 are thus confirmed.

Translated by J. G. Adashko 154

<sup>&</sup>lt;sup>1</sup>M. G. Meshcheriakov and B. S. Neganov, Dokl. Akad. Nauk SSSR **100**, 677 (1955).

<sup>&</sup>lt;sup>2</sup> H. L. Stadler, Phys. Rev. **96**, 496 (1954).

<sup>&</sup>lt;sup>3</sup> T. H. Fields et al., Phys. Rev. **95**, 638 (1954).

<sup>&</sup>lt;sup>4</sup>Durbin, Loar, and Steinberger, Phys. Rev. 84, 581 (1951).

<sup>&</sup>lt;sup>5</sup>C. E. Cohn, Phys. Rev. **105**, 1582 (1957).

<sup>&</sup>lt;sup>6</sup> Clark, Roberts, and Wilson, Phys. Rev. 83, 649 (1951).

<sup>&</sup>lt;sup>7</sup>Batson, Culwich, and Riddiford, Rochester Conference Report, 1957.

<sup>&</sup>lt;sup>1</sup>N. A. Burgov, J. Exptl. Theoret. Phys. (U.S.S.R.) **33**, 655 (1957), Soviet Phys. JETP 6, 502 (1958).

<sup>&</sup>lt;sup>2</sup>N. A. Burgov and Iu. V. Terekhov, Атомная энергия (Atomic Energy) 2, 514 (1957).