
STRONG AND WEAK INTERACTIONS INVOLVING HYPERONS 449 

replacement (14) and (15) will not be mutually ex­
clusive, and the theory is again invariant under 
the transformation A- -A, as in the case of the 
strong interaction. 
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Damping factors are derived for radial and phase oscillations, taking account of variation of 
the magnetic field along the orbit. In the case of a strong-focusing accelerator, in contrast to 
the case of weak focusing, the damping is independent of the variation of the gradient 8Hz/or 
along the orbit if the field Hz is the same in all magnet sectors. 

1. EQUATIONS OF MOTION 

To derive the equations of motion of an electron 
in a cyclic accelerator, we use the well-known re­
lations 

D.L I Ls = rxD.E I E., D.E = E -E., E, :-?> mc2 ; (1) 

cD = - (2rrqcrx I Ls) D.E I Es, rx = dIn LId In E, (2) 

where E s and Ls are the equilibrium values of 
the electron energy and the orbit length, q is the 
harmonic number (the ratio of the rf frequency to 
the frequency of revolution), <I> is the phase of the 
accelerating voltage at the moment when the par­
ticles pass the middle of the accelerating gap. On 
the right side of (2), we have dropped some terms 
which are unimportant for the effects in which we 
are interested: the perturbation AWr of the fre­
quency of the accelerating field and the transient 
perturbation 27rqcaL~ 16H (t)/Hs of the magnetic 
field. 

Differentiating (2) with respect to the time, we 
get1 

(3) 

where 

P0 = ct sin <D, (4) 
s 

where p is the radius of curvature of the orbit 
and P'Y the power in the radiation. Dropping the 
unimportant term describing the perturbation 
AV /V, we have, in the linear approximation, 

(6) 
where p ( t) describes the fluctuations of the ra­
diation, P 'Y is the (frequency) average of the 
power of the radiation at a given point on the orbit; 
this last quantity depends on both betatron and 
phase oscillations. According to (6), 

P-y = Pys [I- 2L.<P j2rrqcrx- 2nr IPs], (7) 

n =-(PsI Hs) 8Hs I ar. 



450 Iu. F. ORLOV and E. K. TARASOV 

Substituting (5) and (7) in (3), we get the follow­
ing equation for the phase oscillations in linear 
approximation: 2 

<P + £. + 21\. ~ + Q2<j> 
Es 

+ 2rcqca. pys (2n-I)T = 2~q~(J, p(t), (8) 
Ls Es s Ls s 

¢ = CD -<D., 0.2 = 2-rrqcrx.P QS cot <D./ LsEs 0 

Here we have made use of the fact that if < P ys > 
is the power of the radiation, averag~d over the 
unperturbed orbit, Pos = < Pys > + Es. 

We write the equations for betatron oscillations 
in the form 

00 E + P · · c• 
r + • E ys r + 2 (I - n) r 

s Ps 

L c• . c• a Hz c 0 + _s __ rp = ---z--Hxz; 
2rcqca. p; Hp az Hp (9) 

·o Es + p s • c• c2 aHz c • 
z+ E Y z+ 2 nz=H-a- r + HHxr. (10) 

s Ps p z p 

Hx is the longitudinal component of the magnetic 
field. 

2. DAMPING OF FREE RADIAL OSCILLATIONS* 

The radiation fluctuations p ( t) cause phase 
oscillations to be set up and, because of the coup­
ling of radial and phase oscillations [the term with 
~ in (9) ], also excite radial oscillations .3 The 
vertical oscillations are not directly coupled to 
the phase oscillations. If 8Hz/8z = Hx = 0, they 
are damped according to the formula 

t E', ' p 
( 1 ( I y) exp - 2 J dt' --E-

o 

( cf. Ref. 2). The damping associated with the ra­
diation is classical in character, and is caused by 
the fact that in the accelerating intervals the par­
ticles pass through an electric field which is in­
tended to compensate for the radiation loss. For 
this reason the damping contains the term Pos/E 
in place of the usual E/E. If there were no coup­
ling of radial and phase oscillations, the free ra­
dial oscillations would, for this same reason, have 
an additional damping ( cf. Ref. 2) with decrement 
- < P ys > /2E and the phase oscillations a damp­
ing with decrement - < Pys > /E, as is evident 

*The possibility of the existence of a damping mechanism 
due to radiation was first pointed out by A. M. Budker in 
1954 (private communication). 

from Eqs. (8) and (9).* 
The coupling of the oscillations leads to a re­

distribution of the damping strength. If no special 
measures are taken, the radial oscillations in a 
strong focusing accelerator are anti -damped with 
decrement i< Pys >IE, while the phase oscilla­
tions are, correspondingly, more strongly damped 
with decrement - 2 < P ys > /E . To get rid of the 
build-up of the radial oscillations, we can make 
use of their coupling to the vertical oscillations 
( cf. Ref. 4), for example, by introducing magnets 
in which there is a component Hx. However, this 
method is not the best, since it obviously does not 
enable us to obtain the oscillation damping which 
is needed for marked reduction of particle losses 
(since this method leaves the sum of the damping 
factors for vertical and radial oscillations equal 
to zero). 

Later we shall show that in a strong-focusing ac­
celerator (more precisely, when a = d ln L/d lnE 
« 1) the damping factors do not depend on the 
variation of n along the orbit (if Hz is the same 
in all the magnets), and we shall obtain a general 
formula for the damping of radial and phase oscil­
lations. As we shall see, the damping depend;.; on 
the variation of Hz along the orbit, and that for 
any values of Hz those magnets which have low 
n have no influence on the result (contrary to the 
erroneous statements in Refs. 2 and 4). 

Since the coupling of r and z oscillations is 
unimportant for this problem, we shall assume 
that 8Hz/8z = Hx = 0. 

Suppose that radial oscillations are excited at 
t = 0. Because of the dependence of the radiation 
in an inhomogeneous field on r [the term 2nr 
in (8) ], the excitation will be transferred to the 
phase oscillations. Usually the strong inequality 
w » Q » PyE is satisfied, where w and Q 

are the frequencies of betatron and phase oscilla­
tions, respectively. The forced oscillation of the 
phase is therefore of the form 

{jJ :::::: _ 2rcqca. P ys (2n _ I) _c__ ; 
L8 E8 Ps 

(11) 

We shall use Eq. (9) for r, and shall neglect 
in (11), as we do throughout, the terms containing 

P~! £2, EPyf £2, E2 I £2, Pyf E = 4P):.'f £2, E I £2° 

*In addition, 0 2 is not proportional to E/E, but rather to 
P 08 /E. This also gives an additional damping of the phase 
oscillations. 
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In other words, we shall use as our basic equation 

r+(cjp)2 (1-n)r= 0. (12) 

We first write PysPs a:s 

I\sPs = P yoPo + (i\sPs- P yoPo) • (13) 

where PyoPo is some constant. If the magnetic 
field is the same in all magnets with the exception 
of certain sections, then Pyo and Po are the 
power of the radiation and the radius of curvature 
in the magnets of standard type, while P Ps -
PyoPo is the deviation in the non-standarfsections. 
From (12) and (13) we get 

+ 2 ~ n-;; 1 P ysPs--;. P yo Po rdt'} . 
0 Ps 

After substituting this expression for $ in Eq. 
(9) for the radial oscillations, we make the sub­
stitution 

r ==a~+ a"cp", ; =a~+ a·~·, . . (14) 

where cp and cp* are two linearly independent 
solutions of (12), normalized by the condition 

•· ·• 2·w ~<p-rp<p = t . (15) 

We then find the following equation for a: 

cp and cp* are oscillating functions, which average 
to zero. 

The frequencies of the betatron oscillations are 
always chosen so that there is a non-integral num­
ber of oscillations around the orbit. Because of 
this we see that if we are interested in only those 
terms of (16) which give an increase (or decrease) 
of a with time, we can drop oscillating functions 
and so throw out all the terms containing a*. In 
the remaining integrals, we can take a out from 
under the integral sign, neglecting terms which 
are quadratic in the perturbation. After this, mak­
ing use of the fact that only the real part of (16) 
gives an increase of a with time, we find by using 
(15). 

_ { 1 ~ -1 , ( · - 2P yoPo '! a- a0 exp -2 ~ Es dt Es + Pys- -P-s -; 
0 

(17) 

Now we transform the double 'integrals: 

t "' t' t t * 

~ :. dt'~ F (t") cp dt" = ~ F (t") 'f' dt" ~ :. dt' 
0 o 0 I" 

I I" 

=-~ F(t")rpdt"~ :: dt' +K(t). 
0 0 

(18) 

Concerning the function K (t), which is the prod­
uct of two integrals ( one of which contains cp and 
the other cp* ), we can say that in any case this 
function unlike the double integral does not in­
crease with time,* so that it can be dropped as un­
important in the exponential (17). On the other 
hand, we shall add an unimportant oscillating func­
tion to the integrand of (18), replacing the function 

by the function 

I 

~ = ~ Im <p [~ dt' rp* IPs+ const]. (19) 
0 

The constant in the brackets can be chosen so that 
1/J is a periodic solution (with a period equal to one 
revolution) of the equation 

(20) 

The function 1/J, which describes the forced radial 
oscillations that result from energy fluctuations, is 
useful since it occurs frequently in accelerator 
computations. 

The difference PysPs- PyoPo occurring in(17) 
is conveniently represented as 

f\sPs- PyoPo = PyoPo (Hs- Ho) I Ho. (21) 

Using (18), (19), anJ (21), we get the following final 
expression for the exponential damping of the free 
radial oscillations: 

I 

{ l ~ dt' r . - ( <)! \ r f ~ exp - 2 y- Es + PYS 1 + - I 
s L Ps j 

u 

PyoPo n-1 Hs-Ho ]} 
-2-- + 2PyoPo - 2- If o/ • 

Ps Ps o 
(22) 

*More precisely, it is proportional to P y/E, whereas the 

other terms are proportional to ( (P y/E) d t'. 
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Let us consider the case where the field in all 
magnets is the same ( in particular, the case of a 
weak-focusing accelerator). In this case the ratio 
if;/ Ps in the integrand can be replaced by its aver­
age value along the orbit. As is well known, 

t 

<.Jr/p.) = lim _!_t \' J... dt' = oc = dIn Lfd In E (23) 
t~ co j Ps 

0 

(where we have replaced the momentum by the en­
ergy, assuming that E » mc2 ). Thus, for Hs = 
Ho, 

(24) 

This special case is the result already given by 
Kolomenskii and Lebedev •2 In a strong-focusing 
accelerator ( a « 1) there is antidamping of the 
oscillations, while in a weak-focusing accelerator 
[a = 1/( 1- n), 0 < n < 1] there is dampingwith 
the decrement 

3. DAMPING OF FREE PHASE OSCILLATIONS. 
DISCUSSION OF RESULTS 

The result which we have found is confirmed by 
a simpler computation of the damping of the phase 
oscillations. 

Suppose that phase oscillations are excited at 
t = 0. This leads to the development of radial os­
cillations. We may choose a periodic solution for 
r, since it differs from any other by an oscillat­
ing term which is irrelevant for the damping. Thus 

r = .J;tl.E/Es =- (Ls.J;f2r-qcoc) ~· (25) 

Substituting (25) in (8) and taking account of the 
variation in the frequency of the phase oscillations, 
we get 

I . - -
A. { 1 \[0 E.+2Pys-Py8(2n-1)~/p5 ] '} 
'I' - exp - 2 j n + E dt . (26) 

0 • 

According to Eq. (20), which if; satisfies, 
l -- t 
\ p ;o~Ps 2n- 1 •l•dt' = 'i ..!!!:_ [p _j_- 2P k 
.) f. 2 '1' .) E ys p yO p 
4' s Ps o & s s 

(27) 

The last integral can be dropped since ~· (unlike 
if;) averages to zero. Finally, 

t • • -
A. { 1 ~ [ Q + E s + P ys (2- <j;,'p•) 
'l'f -exp -- -

2 n E. 
0 

P H.-Hon-1 ] '} + 2Py0 ~- 2PyoPo -H- - 2- cjl dt . 
~ 0 ~ 

(28) 

As was to be expected, the sum of the damping 
coefficients for radial and phase oscillations does 
not depend on the form of if; and ( Hs - H0)/Ho, 
i.e., it does not depend on the specific form of the 
radial-phase coupling. The part of the sum which 
depends on the radiation is always 

t 

-} ~ dt'Pys/E •. 
0 

For the case of weak focusing, where Hs = H0, 

we get the familiar result of Sands: 1 

/..i."'--oc--1-
"'- Ps /- -1-n. 

(29) 

The damping factors for r and cp can also be 
obtained by finding the characteristic roots of the 
system of equations (8) and (9). For this purpose, 
we make the substitution 

where v is the betatron oscillation frequency, so 

that cpe -ivt and (pe -ivt are periodic functions. 
We then get in place of (8) and (9) a set of four 
first order equations with periodic coefficients 
(which are constants for the case of weak focus­
ing), and using first order perturbation theory we 
get four fundamental solutions Xfk (t) (one index 
labels the solution, the other the function in the 
solution). If the Xik ( t) are defined by the initial 
conditions 

x,h (O) = ail,, 

the characteristic equation has the form5 

1 x," (T) - i.a,h 1 = o, 
where T is the period of the coefficients in the 
equations for the xik ( t) . The damping factors 
are identical with those obtained above. 

Formula (22) shows that in order to get damping of 
radial oscillations in a strong-focusing accelerator 
with a decrement equal to, say, - < Py >/2Es, 
which is sufficient for a marked reduction of par­
ticle losses, the approximate equality 



DAMPING OF OSCILLATIONS IN A CYCLIC ELECTRON ACCELERATOR 453 

/n-1 H8 -Ho~'"=/_!_"-., 
"\., p~ Ho / "-., Ps /' 

(30) 

must be satisfied, At the same time the damping 
factor for the phase oscillations is still sufficiently 
large and is equal to - < P >!Es· 

The results we have founJ can be visualized as 
follows. The additional damping of the radial os­
cillations occurs together with an additional anti­
damping of the phase oscillations, i.e., oscillations 
of the energy are built up. For buildup of energy 
oscillations it is obviously necessary that an in­
crease in the energy of the particle be accompa­
nied by a decrease in the radiation. This will be 
the case if, when the energy is increased, the tra­
jectory of the particle changes so that the quantity 
< H2 >,..., < p-2>, averaged along the new trajec­
tory, decreases. For example, in a weak-focusing 
accelerator < p - 2 > always decreases with in­
creasing energy, and the more sharply the closer 
n is to unity, since for n 2: 1 the motion becomes 
unstable. On the other hand, in a strong-focusing 
accelerator < p-2 > increases with increasing 
energy, even though < 1/p > decreases. This re­
sult is explained by the strong bending of the per­
turbed trajectory when t.E/E > 0 (inside the ra­
dially focusing magnets) compared with the un­
perturbed orbit, because of the large value of n. 
As a result the radial oscillations are built up in 
the strong-focusing accelerator (instead of being 
damped as they are in the weak-focusing case). 

Obviously magnets with low n, introduced into 
a strong-focusing system, cannot change this pic­
ture, since they have practically no effect on the 
trajectory and do not change p-2• As was proven 
above, another less obvious statement is also 
valid, namely that the introduction of additional 
magnets with arbitrarily large n but with the 
same field as in the other magnets does not change 
the dependence of < p-2 > on the energy fluctua­
tions. When n is varied along the orbit without 
varying the field, the equilibrium trajectory is 
distorted so that 

/ 1-2n<Ji/ p1 ) 
(p-2) ~" 2 

Ps 

is not changed for a given t.E /E . 
To change the damping, it is necessary to vary 

the field. According to the qualitative arguments 
given above, to increase the damping for radial 
motion the field must be larger in the radially de­
focusing magnets ( n > 0), since it is precisely in 
this case that the equilibrium trajectory straight­
ens with increasing energy (if 1jJ > 0, which is 
usually the case). Formula (30) corresponds to 
precisely this result. 

In practice, to satisfy condition (30) it is ap­
parently more convenient to have a small number 
of radially focusing magnets with zero or nega­
tive field and high n < 0, which are designed so 
that they perturb the conditions of oscillation as 
little as possible. These requirements are sat­
isfied, for example, by some of the proposals of 
Livingston and Robinson.6 
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