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Various types of quasi particles interacting among themselves or with static inhomogeneities 
of the crystal are considered. General formulas for the thermodynamic potential, valid for 
any type of particle and for an arbitrary law of interaction, are obtained by perturbation the­
ory methods under the assumption that the interaction energy is not large. As an example an 
almost-degenerate Fermi gas of quasi particles (metal electrons) interacting with the crystal 
defects is considered. Interaction of the conductivity electrons with composition fluctuations 
leads in the case of alloys to a dependence of the electron part of the free energy, the electron 
chemical potential, the thermoelectron emission current, etc. on the long and short range 
order parameters. The ordering energies associated with the electron part of the free energy 
are of the same order of magnitude as the experimentally observed ordering energies. The 
vibrational part of the free energy has been determined for solid solutions in which both the 
masses of the atoms and their interaction energies are different. 

As is well known (see, for example, Landau potential energy of the quasi particles in such 
and Lifshitz1) the weakly excited states of a solid cases depends on the magnitude of the correspond-
may be regarded as a superposition of elementary ing fluctuations. In other cases fields produced 
excitations which form a "gas" of weakly interact- by the inhomogeneities of the lattice vary rapidly 
ing quasi particles. The existence in the crystal in time and it is necessary to take their dynamic 
of various inhomogeneities alters the properties character into account explicitly. Dynamic in-
of the elementary excitations (for example, their homogeneities occur, for example, as a result of 
energy spectrum). The introduction of elementary vibrations of the atoms of the lattice, or as a re-
excitations in a system which does not have trans- sult of the excitation of spin waves in ferromag-
lational symmetry is a much more complicated netics. The effect of such inhomogeneities on the 
problem than their introduction in the case of an quasi particles could be described in a number of 
ideal crystal. Therefore for the investigation of a cases by considering the action of a variable field 
non-ideal crystal if the degree of inhomogeneity on a system of particles. However, since in such 
occurring in it is not great, it often turns out to be cases time averaging must be performed, and often 
more convenient to introduce elementary excita- the reaction of the quasi particles on the inhomo-
tions in an ideal crystal which serves as a "zero- geneities is important, such a method of treatment 
order approximation" for the inhomogeneous crys- is usually inconvenient. lt is much more conven-
tal under discussion, and to take into account the ient to consider that to each type of dynamic in-
effect of the inhomogeneities by means of a poten- homogeneities there corresponds its own kind of 
tial energy acting on them. In this case the prob- quasi particles (phonons, ferromagnons, etc.) and 
lem of finding the partition function for the crystal their effect on the thermodynamics of the system 
is reduced to the problem of finding the partition of quasi particles under discussion can be deter-
function for the gas of quasi particles moving in mined by evaluating the partition function for the 
an external potential field. interacting quasi particles of different kinds. 

The inhomogeneities of the crystal are often Thus, in order to determine the effect of the 
practically stationary. Static inhomogeneities of inhomogeneities of the lattice on the thermody-
such a type occur, for example, in solid solutions namic quantities it is necessary to obtain the par-
where they are associated with composition flue- titian function for the gas of quasi particles sub-
tuations, in piezoelectric crystals where they are jected to the field of the static fluctuation inhomo-
associated with polarization fluctuations, etc. The geneities of the crystal, or interacting with another 
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system of quasi particles. In practice, it is more 
convenient to evaluate not the ordinary but the 
grand partition function which, as is well known, 
may be represented in the form 

(1) 

Here A. = 1/kT, Na is the number of particles of 
type a, JLa is their chemical potential, H = H0 

+ H1 is the Hamiltonian of the system (dependent 
on Na ), H0 is the Hamiltonian of the system in 
the absence of static inhomogeneities and of inter­
actions between the quasi particles, and H1 is the 
interaction Hamiltonian. In the evaluation of the 
trace the summation is taken over the complete 
system of functions possessing the required sym­
metry (depending on the type of quasi particles). 
If the interaction energy is not great, one can use 
for the evaluation of Z the thermodynamic per­
turbation theory treating H1 as a small perturba­
tion. In so doing it is convenient to make use of 
Schwinger's expansion2 for the trace of the expo­
nential operator: 

Spexp [-'A (H0 + H1)] = Sp e-J..H, -'ASpH1e-AH, 

1 

+ ~2 ~ duSpH1e-AH,u H1e-J..H,(I-u) + .... 
0 

(2) 

Formula (2) has been used previously for the 
determination of the partition function of conduc­
tion electrons interacting with lattice vibrations3 

or with static inhomogeneities' in semiconductors. 
In the present paper we shall determine with the 
aid of formulas (1) and (2) the grand partition func­
tion (and the thermodynamic potential correspond­
ing to it) for a system which is described by a 
Hamiltonian of quite a general form. 

As an example we shall consider the interaction 
of metal conduction electrons with static inhomo­
geneities arising as a result of composition fluctu­
ations in solid solutions or of fluctuations in mag­
netization of ferromagnetics near the Curie point. 
As a second example we shall consider the inter­
action of lattice vibrations with composition fluc­
tuations. 

1. GENERAL EXPRESSION FOR THE THERMO­
DYNAMIC POTENTIAL 

For the zero-order Hamiltonian H0 we shall 
take the Hamiltonian of non-interacting particles 
consisting of the sum of terms corresponding to 
the individual particles. Then H1 = H - Ho will 
describe the interaction between the particles and 

also their interaction with the static inhomogenei­
ties. It is convenient to solve the above many­
body problem by making use of the second quanti­
zation representation obtained with the aid of single 
particle functions which are eigenfunctions of the 
Hamiltonians of the individual particles. In this 
representation the energy operator H0 (defined 
up to a constant term-} has the form 

Ho = ~ ~ s~kat_a,k, (3) 

<X " 

where a denotes the kind of particles, k is the 
set of quantum numbers characterizing the states 
of the individual particles, Eak is the energy of 
the particle in the k-th state, and a~k and aak 
are the particle creation and annihilation opera­
tors. These operators satisfy the commuation re­
lation 

(4) 

Both here and below the upper sign should be taken 
in the case of Fermi statistics, and the lower sign 
in the case of Bose statistics. 

The perturbation energy operator H1 in the 
case of particles interacting with static inhomo­
geneities, or of particles of one kind interacting 
among themselves, may be written in the form 

l 

H1 = ~ _2; [Vaki a:h, • .. a:k;aak;+I. : . aakz 
ak i=l 

* + + v aki a~k, ..• a<Xki a"hi+l . .. a"'kz], (5) 

where the constants Vkfi = Vak1 ... kfi are deter­
mined by the nature of the quasi particles and of 
the static inhomogeneities and satisfy the condi­
tions 

The summation over ak is taken over all 
k1 ••• kt and over all a. In special cases expres­
sions (5) may be considerably simplified since the 
Vaki differ from zero only for special values of 
i satisfying certain conditions. In a number of 
cases H1 may be a sum of expressions (5) cor­
responding to different R.. However, since in the 
evaluation of Z up to the second order inclusively 
the individual terms of H1 enter additively, we 
shall restrict ourselves to a consideration of H1 

of type (5) [or (6) ], bearing in mind that correc­
tions corresponding to terms with different R. may 
be simply added. 

In the case of interaction of quasi particles of 
different kinds with each other (and also in the 
case of interaction with static inhomogeneities if 
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quasi particles of one kind can transform into quasi particles of a different kind), H1 has the form 

(6) 
* + + + + + Vcxki~xfaak, ... aa~<; aak;+1 ... aak 1 a~"' ... a~xp~"i+l. ··a~""'' 

where Ka denote quantum numbers of quasi par­
ticles of type {3 

V aki~xj = V cxk,."kzi.~x, .. ,xmf•' 

v o:,.,ha ... kb ... i, ~··•"c·""d ... f = v: ... kb"·ka .. ,i.S"·"d"·xc ... f 

with 1 s a s i, i < b s !, 1 s c s j, j < d s m. 
Summation over kK is taken over all k1 ••• k£, K1 

•• • Km· 
Let us now evaluate by means of formulas (1) 

and (2} the grand partition function up to the second 
order perturbation theory terms inclusively, and 
also the corresponding thermodynamic potential 

Q = !20 + !21 + !22 + ... = - kT In Z 

z<ll l z<2l 1 (z<ll ) 2j (7) 
= -kTinZ<0l-kT--kT --- -· - ... z<o) z<o) 2 z<o) 

In carrying out the above calculation we shall 
evaluate the traces with the aid of the complete 
system of eigenfunctions of the operator H0 in the 
second quantization representation. These func­
tions are specified by the occupation numbers 

(8) 

It is convenient to use the grand partition function 
and the second quantization representation because 
in this case the evaluation of the trace in (1} and 
the summation over Na reduces to an elementary 
summation over all possible values of nak· Thus 
for z(O} one immediately obtains from (1), (3), 
and (8) the well-known expression (see, for ex­
ample, Landau and Lifshitz1): 

z<o) =Ilil[l±expA(!J.~-s,")J±l. (9) 
~ k 

In evaluating the first order corrections in the 
case of interaction with static inhomogeneities, it 
should be taken into account that the diagonal rna­
trix elements in (5} differ from zero only if to 
each annihilation operator there corresponds a 
creation operator with the same a and k, i.e., 

l m 

only those terms are important for which i = J./2 
(! should be even), and which have the same sets 
of numbers k1 ••• ki and ki+t ... k£. Evaluating 
Q 1 by means of formulas (7), (1)- (3), (5), and (8) 
we obtain 

z(ll 1 
il1st =- kT Z~~ = z<ol 

X ] exp(A~ !LxNa)Sp[Hiexp(-IB0)] (10) 
•.. Nrx.··· 

= i! ~'V~ni [flak, ... nah; +(I+ nan,) ... (I+ flak;)], 
ak 

where i = !/2, v'akl =Yak k·k k· and n,k 1oo• 1 1"• 1 <..< 

are the mean occupation numbers 

(11) 

If H1 is given by formula (6) then Q 1 is deter­
mined in a similar manner: 

.Qld = i!j! ~ ~'v~hi~xj [11 •• , .. . 7tak;n~x, ... fl·~"i 
a<~ lix 

+(I+ nak,) ... (I+ na,,) (I+ fl~xJ ... (I =\~fl~x 1)], (12) 

where 

Determining further on the correction Q2 to 
the operators (5) and (6) we obtain 

l 

.Q2st =-),~~(I + oi.l/2) i! (l- i)! I Vaki [2 

1 

X ~ du (I+ n,k,) ... (I +flak;) 
0 

X -n -n k exp [- ), (sak + · · · aki+l • · · a l ' 

(13) 

.Q2St=- A ~ ~ ~ ~ ( 1 + o;.;12) (I + oi.m/2) i! (l- i)! j! (m- j)! 
a<r; kx i-li-1 

1 

X I Vcxki~xil2 ~ du (I+ flak,) ... (I+ flak;)!Zali;+l ... llahz (I+ n~xJ ... 
(14) 

0 

... (1 + n~"i) n~xi+l . . . fl~xm exp [- A (s.k, + ... + 8ak;- Eaki+l ... - Eakz + 8~x, + ... E~"i- 8~"i+l - ... - 8~"m) u]. 
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In summing over ... ka ... kb . . . ( 1 ~ a ~ i, 
i < b ~ l) in formulas (13) and (14), the terms 
with ka = kb (or Ka = Kb) should be excluded. 

The above general formulas for the corrections 
to n will be applied below to various physical 
systems. In addition to the examples considered 
below they may be employed for the investigation 
of the effect on the thermodynamics of spin waves 
in ferromagnetics of their interaction with fluctu­
ations in composition and in order parameters, 
with conduction electrons and with lattice vibra­
tions. They can also be used for the investigation 
of the effect of anharmonicity on the thermody­
namics of the phonon gas, for the determination of 
corrections to the thermodynamic potential asso­
ciated with the interaction of atoms in a mixture 
of different gases (for example, He3-He4), etc. 

2. INTERACTION OF A STRONGLY DEGEN­
ERATE GAS OF FERMI QUASI PARTICLES 
WITH CRYSTAL INHOMOGENEITIES 

As the first example, we consider a system of 
Fermi quasi particles interacting with static crys­
tal inhomogeneities. We suppose that the interac­
tion of the particles with each other may be neg­
lected and that the gas is in a nearly completely 
degenerate state. The results obtained on solving 
such a problem may be applied to the investigation 
of the effect on the thermodynamics of the crystal 
of the interaction of metal conduction electrons 
with static inhomogeneities. In this case one can 
consider either the conduction electrons in a single­
electron approximation, or (more accurately) the 
Fermi quasi particles obtained after eliminating 
the Coulomb interaction between the electrons. The 
screened Coulomb interaction of such particles with 
one another, and their interaction with the collec­
tive oscillations of the electron plasma, are both 
small and their effect on the thermodynamics of the 
electrons may be taken into account separately by 
means of formulas (13) and (14). 

We expand the potential energy of interaction of 
a particle with the static inhomogeneities into a 
Fourier series: 

V (r) = ~ (V "ei><r + v: e- i><r); V ->< = v:, (15) 

where the vector IC takes on values determined by 
the conditions at the crystal boundary. (Terms 
corresponding to K and to - K are obviously the 
same.) We shall choose the potential energy in the 
zero-order approximation in such a way that VK 
= 0 for IC = 0. Going over to the second-quantiza­
representation we find that the Hamiltonian of the 
system in the case under discussion has the form 

)( k 
(16) 

Here k is the propagation vector (not in reduced 
form) of the quasi particle; Ek is its energy; 
V Kk = V KPKk where PKk is the matrix element of 
the function exp ( iiC • r) formed using the single­
particle wave functions corresponding to the prop-
agation vectors k and k - IC1 

( PKk "" 1), K' = IC 

- 21rK0 where the reciprocal lattice vector K0 
is chosen in such a way as to make the vectors k 
and k - K.1 lie in one cell. For the sake of sim­
plicity in the Hamiltonian (16) terms are omitted 
which correspond to virtual transitions between dif­
ferent energy zones. This approximation holds if 
the separation between the zones is considerably 
larger than the Fermi energy. We note that taking 
into account the terms mentioned above does not 
alter the qualitative conclusions reached below. 

Since for K. = 0, V K = 0 and V Kk = 0 (i.e., in 
the notation of the preceding section, Vak1k2 = 0), 
then it follows from (10) that the first order cor­
rection n1 reduces to zero. Evaluating the sec­
ond order correction by means of formulas (13), 
(16) and taking into account the fact that in the new 
notation k1 - k, k2 - k - te', V ak1k2 - V Kk we 
obtain 

n = no + n2 = Do - 2g'A ~ ~ I v ><k [2 nk ( 1 - nk-x') 
" k 

1 

X ~ exp ['A (sit -EJt-x•)u]du. 
0 

(17) 

Here n0 is the thermodynamic potential (ex­
pressed in terms of the variables v, T, J.1) of 
the system of Fermi quasi particles in an ideal 
crystal, while the factor g takes into account the 
spin of the particles and in the case of electrons 
is equal to 2. The sum over k in the second term 
of formula (17) may be replaced by integration 
over (v/87r3 )dk, where v is the volume of the 
crystal, and similarly in the case of the summa­
tion over K. The integration over k may be car­
ried out in the limiting cases of weak and strong 
degeneracy of the Fermi gas. In the case of weak 
degeneracy one gets a result which had been ob­
tained earlier by Krivoglaz and Rybak.4 In the 
case of almost complete degeneracy when J.t/kT 
» 1 in the evaluation of the sum over k and of 
the integral over u 

1 

J(x) =A~ I Pxk [2nk (1- fik-x') ~ exp [A. (sk- sk-x') u) du 
k 0 

V ~ n - n 
= - dk l [2 k k-><' 

87t" , Pxk e: _ e: 
k-x' k 

(18) 
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one may expand asymptotically in powers of kT Ill 
and limit oneself to the first non-vanishing term of 
the expansion. 

It is not difficult to obtain an explicit expression 
for J ( IC) in the case when the dependence of 
1 P~ek 12 on k may be neglected ( 1 PKk 12 = 1 PKk 12 ) 

and when, moreoever, Ek depends quadratically 
on k: E:k = ti2k2 /2m where m is the effective 
mass of the Fermi quasi particles. Carrying out a 
simple calculation, we find that in this case 

v mko ( 4k~- x'2 2ko + x' \ 
J (x) = 47t2 VI Px [2 1 + 4ko><' In I '2ko- ><'II ' (19) 

k0 = V2!Lm/1i. = V61t2Nefgv; 

ko is the boundary propagation vector of the de­
generate Fermi gas, Ne is the number of Fermi 
quasi particles. The derivative of the function (19) 
with respect to K has a discontinuity at the point 
K = 2k0• This singularity, as well as the singular­
ity of the function nk at absolute zero, is associ­
ated with the asymptotic nature of the expression 
obtained above and disappears in the exact expres­
sion. 

In the general case of arbitrary dependence of 
E:Jt on k it is impossible to carry out the evalua­
tion of J ( IC) for arbitrary K. One can only note 
that in the adopted approximation J ( IC ) does not 
depend on A., and one can also find the expression 
in the limiting case of small 1~e' 1: 

J (x) = s:S s (!L) I Pxk /2 • (20) 

Here S (E) = dw (E)/dE where w (E) is the vol­
ume of k space contained inside the surface E:k 
= E: while the bar denotes averaging over the sur­
face E:k = jl.. 

As is well known, small changes in the thermo­
dynamic potentials, expressed in appropriate var­
iables, are all the same (see, for example, Lan­
dau and Lifshitz1). This means that the correction 
!22 expressed in terms of the variables T, v, and 
lla coincides with the correction to the free en­
ergy F 2 expressed in terms of the variables T, 
v, Na. Therefore, it follows from formulas (17) 
and (18) that the expression for the free energy 
may be written in the form 

Fq,;:::;:, F0 + F2 = F0 - (gvf47t3 ) ~ J (x) /Vx [2 dx. (21) 

Here one should replace I V K 12 in (21) by its aver­
age over the statistical ensemble. 

Static inhomogeneities should play an essential 
role in alloys. In this case the inhomogeneities 
are caused by fluctuations in the concentrations of 
the components of the alloy. Let us consider a hi-

nary alloy AB which in the general case may be in 
an ordered state. Let us suppose that the atomic 
sizes are almost the same so that the geometric 
distortions of the crystal lattice can be neglected. 
It is convenient to choose for the zero-order ap­
proximation the completely ordered alloy com­
posed of effective atoms whose potential energy of 
interaction with the Fermi quasi particles is equal 
to the average potential energy of interaction of 
atoms situated at lattice points of a given kind. 
Then the potential energy of the perturbation as­
sociated with the inhomogeneities of concentrations 
may be written in the following form: 

N/v v 

V (r) = ~ ~ [CsyV A (r- Rsy) + ( 1 - Csy) VB (r- Rsy) 
s~Iy~l 

- c VA (r- Rsy)- (l-ey) VB (r- Rsy)]. (22) 
y 

Here s is the index of the crystal cell; y is the 
index of the lattice point in the cell; N is the num­
ber of atoms in the crystal, v is the number of 
lattice points in the cell; Rsy is the vector drawn 
from the origin to the lattice point y in the s -th 
cell; csy = 1 if an atom A is situated at the lat­
tice point sy~ and Csy = ~ if an atom B is sit­
uated there; cy and 1 - cy are atomic concen­
trations of atoms A and B at lattice points of 
type y; VA and VB are potential energies of 
interaction with atoms A and B respectively. 

It follows from (22) that the Fourier component 
of the potential energy V K is equal to 

V,.= 21v-~V(r)exp(-ixr)d1:= }UA- fB)c,., (23) 
a 

where 

- - 1 ~ ""'' ( - ) ( . 'R )· -Cx - c.,_, - 2N L.J L.J Csy -Cy exp - tX sy , Csy- Cy 
s y 

= ~ [c,., exp (ix'Rsy) + c:, exp ( -ix'Rsy)]; (24) 
x' 

fA = ~VA (r) exp ( -ixr) &t; f B = ~VB (r) exp ( -ixr) d't, 

(25) 

va = v/N is the atomic volume. The quantities c" 
obviously satisfy the condition 

1 - 1 v - -
~[c,_J 2 = 4N ~~(C5y-Cy)2 = Tv~ Cy(l- Cy)· (26) 
x' s y y=l 

It may be seen from formulas (21) and (23) that 
the correction to the free energy is determined by 
the magnitude of the me an values of the squares of 
the Fourier components of the concentration fluc­
tuations. Multiplying the expression (24) for cK 

by the complex conjugate expression we obtain 
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where the vectors p = Rs' y' - Rsy take on the 
values of all the radius vectors of the lattice 
points and 

1 v (P)--- --
c (p) =- --:;·] (CsyCs'y'- Cy Cy•). 

y~l 

(27) 

(28) 

The quantities E (p) are the parameters of cor­
relation between the occupancy by atoms A of 
lattice points separated from one another by a dis­
tance p (more accurately they are the average 
values of these parameters over different kinds of 
lattice points separated by a distance p). These 
quantities may be determined on the basis of x-ray 
or neutron data.5 We note that if we can neglect 
the scattering associated with geometric distor­
tions of the lattice and with thermal vibrations 
then the quantity I cK 12 is proportional to the in­
tensity of diffuse scattering of x-rays or of neu­
trons divided by the squ;.tre of the difference be­
tween the atomic scattering factors for atoms A 
and B. 

Substituting (23) into (27) and (21) we find that 
the electron part of the free energy of the alloy up 
to the second order perturbation theory terms may 
be written in the form 

where 

a0 = 16!,va ~[fA- fs[2J (~) d~; 

ap= 16!,va ~[fA-fsi2J(~)cos~'pd~. (30) 

The electron part of the zero-order free energy 
F 0 is defined as the free energy of the electron 
gas in an ideal periodic crystal made up of effective 
atoms, and depends only on the long-range par am­
eters (on the quantities cy), but not on the corre­
lation parameters. In the case of absence of long­
range order (disordered alloys ) , F 0 may be con­
sidered to be independent of the temperature (if 
one neglects a small term proportional to T2 

which provides a linear term in the heat capacity 
of the metal) . However, in this case the last term 
in (29) still depends on the temperature due to the 
correlation parameters E (p). For the same rea­
son the electron chemical potential J.L = dF /dNe 
also depends on the temperature (in defining F 
and J.L, we adopt as zero energy the energy of the 
electron at the bottom of the conduction band of a 

disordered crystal composed of effective atoms). 
The dependence of J.L on the correlation param­
eters must lead to a change in alloy properties 
such as contact potential, thermoelectron emission 
current, etc., when the short-range order is 
changed. Thus, the magnitude of the thermoelec­
tron emission current J from a metal is given, 
as is well known,6 by the formula 

mek2 I e I 2 l-'· - 1. 
J = D 21t21i3 - T exp ~ . (31) 

Here me is the electron mass (in vacuo), D is 
the transmission coefficient of electrons from vac­
uum into the metal, x is the energy difference be­
tween an electron at rest in vacuo and at the bot­
tom of the conduction band. 

In order to estimate the change in J when 
short-range order is established, one may set 
I 8F'/8Ne I "' 1 F /Ne I and evaluate the constants 
~-to and ap by making use of data on the residual 
electrical resistance of alloys. Thus, for example, 
by utilizing the estimate of the matrix element of 
the perturbing energy for Au Ag alloys ( see Bethe 
and Sommerfeld, 7 §43) we shall find that 
l fA - fB 12 "' 10-2 JJ.2v~ for K "' k0• Carrying out 
the integration in formula (30) for a0 over the 
volume of the first cell of the reciprocal lattice 
(this will give an underestimate of the result), 
and ultilizing expression (19) for J (K), we obtain 
~-to"' 10-2JJ.Ne, i.e., ~-to/Ne....., 0.1 ev. Because of 
the factors cos ( IC 1 

• p) in the integrand of formula 
(30), the quantities ap must be somewhat smaller 
and may be negative. For a number of disordered 
alloys the correlation parameters E ( p) for the 
first few coordinative spheres are "' 10-12 • Since 
kT "' 0.1 ev, and the coordination number is"' 10, 
it can be seen from (31) that, if the change in E (p) 
is of the same order as E (p) itself, the change in 
J, in establishing or destroying short-range order 
in the solution, may amount to "' 0.1J. The change 
in the contact potential, which is equal to the change 
in the chemical potential, may in this case amount 
to"' 10-2 ev. For the same change in E(p), 
greater effects can be expected, generally speak­
ing, in the case of alloys with a large residual re­
sistance. A particularly large change in J.L in 
disordered solutions can be expected during the 
early stages of decay (during aging) when large 
regions appear in the crystal with a very high de­
gree of short-range order. 

In the commonly employed theory of alloys, 
which is based on the approximation of pair inter­
actions, and which does not take into account col­
lective degrees of freedom, the coefficient Nzw /2, 
(where w is the energy of ordering and z is the 
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coordination number), appears in the expression 
for the total energy in front of the correlation pa­
rameter for the first coordinative sphere. For 
the majority of alloys w"' 0.01-0.1 ev, i.e., zw 
is of the same order of magnitude as the corre­
sponding coefficient zap1/N e in the electron part 
of the free energy. Thus, contrary to the rather 
widely held opinion,6 the change in the electron 
part of the free energy may play a very essential 
role in the appearance of short-range (and also of 
long-range) order in the alloy. 

The change in the long-range order in the alloy 
may affect the electron part of the free energy and 
the properties of the alloy discussed above con­
siderably more than a change in the short-range 
order. In this case the concentrations are differ­
ent for lattice points of different kinds, and the po­
tential energy of the electrons in the zero-order 
approximation, and consequently also F0, depend 
on the degree of long-range order. In the approx­
imation of strongly-bound and weakly-bound elec­
trons, the dependence of the energy spectrum of 
the zero-order approximation on the degree of 
long-range order (which enables us to determine 
F0) has been obtained by Smirnov.8 The terms in 
F 0 containing the degree of long-range order are 
proportional to the square of the difference VA 
- VB (and not to the difference itself), so that in 
order to investigate the effect of order, even for 
small VA - VB, it is necessary to take into ac­
count not only F0, but also the second term in (29). 

A particularly sharp change in the electron part 
of the free energy can be expected near the tem­
perature of the transition of the second kind into 
the ordered state, and also near the critical point 
on the decay curve. In such cases the second de­
rivatives of the free energy with respect to the de­
gree of long-range order, or with respect to the 
concentration, vanish, and anomalously large fluc­
tuations occur in the degree of long-range order 
or in the composition, respectively. 9• 1° For the 
sake of simplicity let us consider a binary solid 
solution undergoing ordering, which contains in an 
elementary cell of the ordered crystal one lattice 
point of the first kind and one of the second kind 
(for example, crystals of the type NaCl or of the 
type of ,8-brass). In this case the quantities cs'Y 
can be written in the form Cs 1 = cs + T)s/2, Cs2 
= cs - T)s/2. The average values of the quantities 
cs and T1s• taken over a large number of cells, 
evidently coincide with the concentration of atoms 
A and with the long-range order fl, which are 
related to the concentrations c'Y by the equations: 
c1 = c + f//2, c2 = c - f//2. For small tl = K - 21r 
x Kt5 (Kt5 is a vector of the reciprocal lattice of 

the disordered alloy) the quantities cs'Y in for­
mula (24) for cK can be approximately replaced 
by the quantities cs, since exp (- iK' • Rs'Y) 
changes appreciably only over distances which ex­
tend over a large number of lattice constants, 
while the quantities ± f/s/2 mutually cancel within 
the boundaries of a cell. On the other hand, for 
values of K close to 27rK{; ( K{; is the vector of · 
the reciprocal lattice which appears in the or­
dered alloy), the quantities cs compensate each 
other [since the factors exp ( -27riK{; • Rs'Y) have 
different signs for lattice points of different kinds 
in a cell], and one must substitute f/s/2 in place 
of cs'Y in (24). Thus, for small K' = K - 27TKt5 or 
K" = K - 27rK~, the average values of 'I cK 12 can 
be evaluated as average values of the squares of 
the moduli of the Fourier components of the ·fluc­
tuations in the composition or in the degree of long­
range order. The latter have been evaluated by the 
author 10 for solid solutions in connection with the 
problem of the diffuse scattering of x-rays or of 
neutrons. Making use of the results given in that 
paper we find that in the case of cubic crystals in 
the ne"ighborhood of a point of phase transition of 
the second kind for I K" I « 1/ d0: 

f-cv. 12 = 1/4/ ''I" j2 = (kTjl6v) [1J~~- ?;~l'fcc + ocx"2P; (32) 

where <Pee• <PT)w and <Pcf! are the second deriv­
atives of the free energy (and not only of its elec­
tron part) per unit volume with respect to c and 
f!; a may be taken as constant ,in the neighbor­
hood of the transition point and on the order of9 

NokTod~, where No is Avogadro's number, To is 
the temperature of ordering, and do is the lattice 
constant. The derivative <Pcf/ is always equal to 
zero for disordered solutions, and vanishes near 
the point at which ordering occurs for ordered so­
lutions whose composition corresponds to the max­
imum temperature of ordering. Similarly, for 
'I K1 I « 1/d0, one can obtain for disordered solu­
tions 

fcx 12 = (kTj4v) ['f'cc + ~x' 2P, 
\ 

(33) 

where ,8 is a constant of the same order of mag­
nitude as a. 

At the point of phase transition of the second 
kind, cp'r/'r/ and <Pcf! vanish and I cK 12 - co as 
K"- 0. As a result of this, the electron part of 
the free energy must vary sharply near the tern­
perature T0. We consider first the case when 
<PeT) = 0. In order to separate out that term in F ci> 
which depends most strongly on the temperature, 
we separate in the integral (21), in the neighbor­
hood of the points K = 27rK{; (in which ~ 
reaches a maximum), spheres of small radius 
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R « 1/ d0 and carry out a change of variables 
IC = x~ . In accordance with (21), (2 3), and 

where fAcS and fBcS are the values of the func­
tions fA and fB at the points te = 27TK6. 

The last term in (34) proportional to ...; CfJTJTI 
leads to the most pronounced dependence of F <I> 

on the temperature in the neighborhood of the tem­
perature T0• However, one should keep in mind 
that the integration in the integral (21) over the 
remainder of K-space outside the selected spheres 
also contains a term proportional to ...; CfJTJTI which, 
however, cannot be evaluated without making use 
of a specific model of the alloy which permits one 
to evaluate the correlation parameters E ( p). We 
shall therefore take these terms into account by 
means of the factors Lc5 (where Lc5 .:S 1) under 
the summation sign in formula (34). Thus, near 
the point of phase transition of the second kind, the 
expression for the electron part of the free energy 
may be written in the form 

Fq, = Fo+ F~ + A'Yr.p~~· (35) 

where 

A' = (gkT 0 I 321tV~oc'") ~ LaJ (21tK~) I f AB- fBa 12 , (36) 
a 

while F; contains higher powers of cpT)T) (for ex­
ample, the first). For small T), F 0 contains a 
term ,..., T)2 which leads to a less pronounced tern­
perature dependence of F <I> near To than the 
term with ...; CfJTJTI. In the general case when for a 
given composition the temperature To is not a 
maximum and in the ordered state .PeT) f- 0, one 
should replace cpTITI in (35) by the expression 
cpT)T) - cleTI/cp00 (which also vanishes when T 
=To). 

Similarly, near the critical point on the decay 
curve in which .Pee vanishes, 

(37) 

where A" differs from A' by the replacement of 
a by (3 and by summation over the points 27TK6, 
which correspond to vectors of the reciprocal lat­
tice of the disordered alloy. 

One can similarly determine the form of the 
expression for the electron part of the free energy 
near the point of phase transition into the ferro­
magnetic state in pure metals (the Curie point). 

(22) integration over these spheres will lead to 
the appearance in F <I> of the term 

R ~J (21tK~) I fAB- fBa 12 

a 

(34) 

In this case an interaction, associated with ex­
change interaction, 11 takes place between the con­
duction electrons and the fluctuations of magneti­
zation. The Hamiltonian of such an interaction has 
the form 

H1 = Cs6.lli (r), (38) 

where s is the spin operator of a conduction elec­
tron, D.:m ( r ) is the fluctuation change in the dis­
tribution of magnetic moments at the point r 
[ :m ( r) is a periodic function with the periods of 
the lattice], while C is a constant. Since near 
the Curie point the relaxation processes become 
extremely slow, the fluctuations may be regarded 
as static ones (see, for example, Krivoglaz and 
Rybak4). Since in the case under consideration 
the electron energy in the zero-order approxima­
tion depends on the spin direction (in the ferro­
magnetic state), taking the spin into account does 
not reduce simply to multiplication by g, and the 
expression for J ( te) will be somewhat altered. 
However, near the Curie temperature, when the' 
terms proportional to the square of the magneti­
zation M2 are negligibly small (see Krivoglaz 
and Rybak4 ), one may, as before, use formulas 
(21) and (18) in the calculation of F 0, after re­
placing I V Kk 12 by 

lj "' I v 12 . 1 I C2 . !2 I f 12 .-M '2 
2 .LJ ! xkcrcr' 1 = 1 4 I Pxk 1 I x I ' x I • (39) 

a,cr' 

Here a and a' are the spin components ( ± i ) , 
MK are the Fourier components of the magnetiza­
tion vector, while fK is a factor which appears in 
the transition from the Fourier component of a 
rapidly oscillating function :m ( r) to the smooth 
function M(r) (fK < 1 and fK- 1 as K- 0). 
Applying the same considerations to the case of a 
cubic ferromagnetic in which the spontaneous mag­
netization is directed along the cubic axis ( z axis), 
as in the case of solid solutions, and utilizing the 
expressions for 1 MKi 12 ( i = x, y, z) given by 
Krivoglaz and Rybak,4 we find that near the Curie 
point the expression for the electron part of the 
free energy has the form 

F = Fo + F;· +A"' r21/a2:p; aM~+ Vo2 r.p 1 aM;J, (40) 
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where A"' is a constant, while the derivatives of 
cp vanish at the Curie point. 

One can make a rough estimate of the constants 
A', A", A"'. Assuming, as we have done before on 
the basis of data on the residual resistance of al­
loys, that I fA - fB 12 ...., 10-2 1J. 2v~, we obtain with 
the aid of formulas (36) and (19) 

"VNokToA' I Ne ~ v NakToA" I Ne ~ ]Q--:3 ev. 

In order to evaluate the constant A"', we set 
CMs "' kTo "' 10-3 IJ., where Ms is the saturation 
magnetization. Then 

VNokToA"' I NeMs~ 10-5 ev. 

It should be noted that the expressions for the 
free energy given above cease to be valid at the 
transition point itself, since on approaching it the 
higher order terms in the expansion in powers of 
the interaction constant of the quasi particles with 
the inhomogeneities of the crystal lattice begin to 
play an ever increasing role. 

The interaction between the electrons and the 
lattice vibrations may be treated with the aid of 
formula (14) in the same way as was done above 
in the case of the interaction of electrons with 
static inhomogeneities. Such an interaction leads 
to a renormalization of the velocities of propaga­
tion of elastic vibrations and to the appearance of 
a certain correction to the electron part of the free 
energy. The solution of this problem has already 
been obtained13 by means of perturbation theory.* 

*We note the free energy must contain terms associated 
with the interaction not only for superconductivity, but also 
for certain other phenomena. Thus, the term in the free en­
ergy of the conduction electrons (proportional to T), which 
appears because of frequency renormalization at high tem­
peratures (T » e, where {) is the Debye temperature), 
must lead to the appearance of a term proportional to T in 
the contact potential of the metal, and also to appearance 
of an additional factor in front the exponential in the ther­
moelectron emission current [see formula (31)!. An addi­
tional factor in front of the exponential also appears owing 
to thermal expansion, but this effect may be separated out 
by studying the dependence of J on the pressure. The in­
teraction of conduction electrons with lattice vibrations 
leads to the dependence of the chemical potential of the 
conduction electrons on the isotopic composition. This 
means that the contact potential difference, the thermoelec­
tromotive force, the factor in front of the exponential in the 
thermo-electron emission current (but not the work function) 
etc., must also depend on the isotopic composition. From 
this it follows, in particular, that a contact potential differ­
ence (which is almost independent of T at low temperatures 
and is proportional to T at high temperatures) and a thermo­
electromotive force (smaller by 2 or 3 orders of magnitude 
than in the case of different elements) must arise between 
different isotopes of the same metal. The isotope effects 
noted above must occur not only in metals but also in semi­
conductors, where they are a consequence of the "polaron" 
or the "condenson" effect.l4 

3. INTERACTION OF LATTICE VIBRATIONS 
WITH INHOMOGENEITIES OF COMPOSITION 

In the investigation of the vibrations of the crys­
tal lattice the inhomogeneities may consist either 
of a difference in the atomic masses or of a differ­
ence in the potential energy of interaction of dif­
ferent atoms. In the case when only the masses 
are different (solution of isotopes) the lattice vi­
brations have been treated in a number ofpapers.15 

In the present article we shall investigate with the 
aid of the perturbation theory formulas derived 
above (on the assumption that no local vibrations 
appear) the more general case of a binary solid 
solution of atoms of different kinds in which not 
only the masses of the atoms, but also their inter­
action energies, are different. The solution may 
be either in a disordered state with one atom per 
unit cell, or in an ordered state. 

The Hamiltonian of the lattice vibrations has in 
the harmonic approximation the form 

3 

+ + ~ ~ ~ v~~s'y' r syif s'y' j • (41) 
sy s'y' i,j=l 

Here i and j are indices of the Cartesian coord­
inates, and rsyi is the deflection of the 3;tom sit­
uated at the lattice point y of the s -th cell from 
its equilibrium position (in a solid solution these 
positions do not form an ideal lattice). The atomic 
masses msy may take on two values, m 1 and 
m2, depending on whether atom A or B occu­
pies the lattice point sy. 

We suppose that the coefficients V in (41) de­
pend only on the kind of atoms situated at the lat­
tice points sy and s' f, and do not depend on the 
kind of neighboring atoms. Then for the pairs AA, 
AB, and BB these quantities may take on respec­
tively the values 

V(1,!), V(1,2), V(2,2). 

For the zero-order Hamiltonian we choose the 
Hamiltonian for the vibrations of an ideal ordered 
crystal with masses my and constants V which 
are the average values of the corresponding quan­
tities 

my= ~ml + (1-cy)m2, 

V!~s'y' = Psys'y' ( 1,1) V!~s'y' ( 1,1) + [Psys'y' ( 1 ,2) 

+ Psys'y' (2, 1)] V!~sy (1 ,2) + Psys'y' (2,2) V!~s'y' (2,2). (42) 

Here, for example, Psys' y' ( 1, 2) is the proba­
bility that the lattice point sy is occupied by atom 
A, while the lattice point s' y', separated from it 
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by the distance Rs' 'Y' - Rs'Y' is occupied by atom 
B. Then the Hamiltonian (41) takes on the form 

1i2 ~ 1 ~ ~l a• H = H o + H 1 = - --2 -=- 7, - 2-
~n"' ..o-..1 ar . 
y Y s i=l syz 

1 l ~ -ij + z-1 ~ ~ Vsys'y'rsyirs'y'j (43) 
sy s'y' i, j =1 

1i 2 1 ..., 3 a2 1 ; i i 
--2 ~ =-,1 ~ [Lsy ~ + 2 ~ ~ 1 t1Vsys'y'rsyirs'y'i• 

y my s i=l r syi sy s'y' i, i=l 

where 

We express the coordinates of the atomic de­
flections in terms of creation and annihilation op­
erators for Bose particles corresponding to dif­
ferent normal coordinates: 

~ - 'I + rsy = LJ (n. 12Nmywkt) 'ekty (cos kRsy- sin kRsy) (akt + akt), 
kl (45) 

1 ~ 2 - I )'/, ekly ( kR . kR ) + a I arsy = - L.i ( NmyWkt 1i ~--12 cos sy- sm sy (akl- akt)· 
2N kt ekly 

Here t indicates the branches of the vibration 
frequencies, wkt are the eigen-frequencies in the 
zero-order approximation, ekt'Y are the polari­
zation vectors satisfying the condition 

Substituting (45) into (44) we shall find the ex­
pression for H in the second-quantization repre­
sentation: 

wh~re 

H = Ho + H1 = ~ nWkt(a;i;akt + -}) 
kl 

1 ~ lf-- I • (46) + 4 ~ L.in. v WktWk'l' (Vktk't' + v -klk'l' 
kl k'l' 

[Lktk'l' = ~ ~ [Lsy (ektyek'l'y) exp [i (k- k', Rsy)], 
sy 

X exp [i (kRsy -k'Rs•y•)]. (47) 

while ' and " denote the real and the imaginary 
parts of the quantities J.L and V. 

We note that for k = k', t = t' in accordance 
with (47), (44), and (4~) 

1 "1\,l (m1- m2)2 ..!_ ~ - ( 1 _ -) vktkt = 0, [Lklkl = N LJ [Lsy = mlm2 v LJ Cy Cy . 
sy y-1 (48) 

The quantities I.Lktk' t' and Vktk' t' may be ex­
pressed in terms of cK [see (24)] and of the Four­
ier components of Pq ( p) defined by the formula 

. 1 ~ -) ( 1 . R + R ) pq (p) = 2N L.i (CsyCs'y'- CsyCs'y' exp - 2 tq, sy s'y' , 

sy (49) 

where the summation is carried out keeping Rs ''Y' 
= Rs'Y + p. The free energy may then be calculated 
up to the second order inclusively with the aid of 
formulae (12) and (14) (in which one should set 
f.= 2). Taking into account (48) and (26) and the 
fact that a small change in Q is equivalent to a 
small change in F expressed in terms of appro­
priate variables we obtain 

2 (m1- m2)2 ~ ~ ( )2-1 --.2 F K = F 0 + 7, 9ktk't' ektek't' Ck-k' 1 m1m, ~ 

kl k'l' 

_ 2 ~ ~ [n.WJ<t (nkt + -})- 'Pklk'l'] 
kl k'l' (50) 

X \ ~ Uktk't' (p) Ck-k' - Wktk't' (p) Pk-k' (p) l2, 
P'i'O 

where F 0 is the free energy of the vibrations of 
a completely ordered crystal consisting of effec­
tive atoms corresponding to the zero-order ap­
proximation, and 

4 . kp . k'p k- k' 
Uktk't' (p) = sm -2 sm 2 cos - 2- p ; 

mcuklcuk't' ~' 

3 . I .. 
X ~ ektiek't'j[t.V~ {1,2)- !1V~1 (2,2)], 

i, i-1 

(52) 
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For ideal solutions in which all the lattice points 
are equivalent and there is no correlation the ex­
pression for FK simplifies to 

c (1 -c) "" "'' [ (- 1 ) - ----y.;- ...:::., ...:::., fiwkt nkt + 2 
kl k'l' 

- Cf'ktk't' ]{ 2c ( 1 - c) ~ W~tk't' (p) 
(53) 

P+O 

+ [~ ( Uktk'l' (p)- 2c COS (k--; k' fi) Wktk'l' (p) )]l 
p+O 

Formulas (50) and (53) enable us to compute 
FK without determining the frequency spectrum 
of the vibrations of the solution, but using only the 
frequency spectrum of the ideal crystal correspond­
ing to the zero-order approximation and the values 
of the constants u and w for different p. 
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