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A method for treatment of various problems connected with static distortions of crystal lattices 
is proposed, in which the distortions are related to fluctuation waves of the composition and of 
the internal parameters. Scattering of x-rays and thermal neutrons in binary solutions of arbi­
trary composition and with arbitrary values of the short and long range order parameters is 
considered. Anisotropy of the crystal and its atomic structure are taken into account explicitly. 
The scattering intensity can be expressed in terms of the thermodynamical characteristics of 
the solution ( or correlation parameters ) , elastic moduli ( or interatomic interaction constants), 
and also in terms of parameters characterizing the dependence on the concentration of the cell 
shape and dimensions. The particular cases of ideal, dilute, almost completely ordered solu­
tions and also of solutions located near the critical point on the decay curve or near phase-tran­
sition points of the second kind are investigated. The diffuse scattering intensity distribution in 
a Cu3Au so~ution, calculated without making use of the theoretical parameters, agrees satisfac­
torily with the experimental distribution. 

IN earlier papers1•2 (quoted in the following as I 
and II) the diffuse scattering of x-rays and neu­
trons in solid solutions was investigated within the 
framework of phenomenological1 and microscopic2 

theories. In the course of these investigations it 
was assumed that the sole cause giving rise to dif­
fuse scattering was the random distribution of the 
atoms among the lattice points of a geometrically 
ideal lattice. In this article we shall investigate 
the influence of geometrical distortions of the lat-

tice, associated with the difference in the size of 
atoms of different kinds, on the scattering. During 
the last few years an intensive experimental study 
was begun of the diffuse scattering due to the above 
cause and of the weakening of the lines in an x-ray 
photograph ( see, for example, Ref. 3 where refer­
ences to other work are given). These problems 
have been studied theoretically for several particu­
lar cases in a number of papers.4- 9 

In this article we investigate the general case 
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of substitution solutions of arbitrary composition 
with arbitrary values of the parameters of long and 
short range order without making use of the approx­
imation of an elastic isotropic continuum. For the 
calculation of intensity we use a simple method, 
which is a generalization to the case when distor­
tions are present of the method used in I and II. 
In this method, which can be called the method of 
fluctuation waves, we consider Fourier components 
of fluctuations of the composition, of the degree of 
long-range order, or of other internal parameters 
characterizing the state of the crystal. The equa­
tions which relate these fluctuation waves to waves 
of geometrical distortions turn out to be simple 
ones. This leads to the possibility of easily ex­
pressing the scattering intensity, which is related 
to the differences in the atomic factors and to the 
geometric distortions, in terms of the above 
Fourier components. The probability distribution 
of the fluctuations is obtained by means of the ther­
modynamic theory of fluctuations, as a result of 
which th~ intensity turns out to be expressed in 
terms of ·quantities determined from independent 
experiments. By means of this method the aniso­
tropy of the crystal and its atomic structure have 
been taken into account explicitly. As in I and II, 
we have not taken into account in the present arti­
cle Compton scattering, nor scattering by thermal 
vibrations, and the calculations are carried out 
within the framework of the kinematic scattering 
theory. The scattering of monochromatic radiation 
by a single crystal is considered. 

1. DISORDERED SOLID SOLUTIONS 

We consider a disordered solid substitution 
solution AB of arbitrary composition, and with 
arbitrary values of the parameters of short-range 
order, an elementary cell of which contains one 
atom. The distribution of the atoms A and B 
among the lattice points of the lattice is determined 
by assigning the numbers Cs, where s is the in­
dex of the lattice point, with cs = 1 if an atom A 
occupies the s-th lattice point, and cs = 0 if an 
atom B is situated there. The distribution of 
atoms can also be specified by giving not the Cs 
themselves, but their Fourier components defined 
by the relations: 

Cs- c = ~, [ck exp (- ikRs) + c~ exp (ikRs)]; 
k 

Ck = ~· ~ (c5 -C) exp (ikRs)· (1) 

Here c is the atomic concentration of atoms A, 
Rs is the position vector of the s-th lattice point, 
the summation over k is taken over the vectors 

k/27T lying in one half of the first cell of the recip­
rocal lattice space and satisfying cyclic conditions. 

The geometric distortions may be characterized 
by the displacements oRs of atoms from the lat­
tice points of an ideal periodic lattice having the 
same structure and the same lattice constant as 
the solution. To each distribution of atoms there 
corresponds a definite distribution of displace­
ments. The 6Rs may be represented in the form 
of a superposition of displacements corresponding 
to individual fluctuation waves. The discussion is 
considerably simplified if one assumes that the 
boundaries of the crystal are held by infinitely 
rigid walls and cannot be displaced. We denote by 
k' a vector parallel to the displacements of atoms 
in the k-th wave and equal to k in absolute value. 
Then 

(2) 

When k - 0 the ak cease to depend on k (but 
do depend on the direction of k). Explicit expres­
sions for ak are given below. Strictly speaking, 
we should also have taken into account in the ex­
pansion quadratic and higher-order terms in ck. 
Instead of this, in an alternative formulation of the 
problem, we could have taken into account fluctua­
tions of short-range order parameters as well as 
fluctuations in composition in determining oRs, 
and could have also taken into account the fact that 
the quantities ~ should be evaluated for constant 
values of these parameters and may differ from 
the equilibrium values given below. The approxi­
mation adopted in the present article is valid if 

where v is the molar volume. This condition is 
fulfilled for solutions obeying Vegard's rule (lin­
ear dependence of v on c ) , and also for all solu­
tions of low concentration of one of the components. 

As is well known, the x-ray scattering intensity 
expressed in electronic units can be given in the 
form 

(3) 

Here fs = csfA + ( 1 - cs) fB is the atomic scat­
tering factor for an atom situated at the s-th lat­
tice point, fA and fB are the atomic factors for 
atoms A and B, q1 is the difference between the 
wave vectors of the scattered and the incident 
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waves, and the bar indicates averaging over all the 
permutations of the atoms among the lattice points.* 

In calculating I by means of formula (3) it is 
convenient to break up fs into its average value 
and its deviation from the average: 

f.= f +(c.- c) Cf A- f B), f = cf A+ (1- c) fs· 

The expression for I is then broken up into three 
terms each of which we shall evaluate separately: 

N 

=If i2 ~ exp (iq. R.- R.,) exp (iq1,oR.- oR,,) 
s, S1 =1 

N 

+[f(f~-f~)+f*(fA-fs)l ~ exp(iq,R.-R.,) 
s, s'=l 

+ifA-fsl2 ~ exp(iq,R.-R.,) 
s, s'=l 

x (c.- c)(cs'- c) exp (iq 1, oR.- oR.,). (4) 

Here q = qt - 21TKn, where Kn is the vector of 
the reciprocal lattice lying in the same cell as the 
vector q1/21T ( so that q/21T lies in the first cell ) • 

It can be seen from (4) that in order to evaluate 
It it is necessary to find the statistical average of 
the expression exp(i~. oRs- oRs'). Such an av­
erage may be easily evaluated if one notes that in 
accordance with (2) this exponential breaks up into 
a product of factors corresponding to different k 
and adopts for the probability distribution of the 
quantities Ck the Gaussian distribution ( cf. Refs. 
11 and I): 

(5) 

( The formulas relating ~ to the thermodynamic 
characteristics of the solution are given below). 
Then 

= exp [-2 ~' (q~k')• a~ (1- cos k, R.- R.,)]. 
k k gk 

(6) 

*To obtain the neutron scattering cross-section per unit 
solid angle one should replace fA and fB in the formulas 
for I by AA and AB, which are constants describing the 
interaction of the neutron with the nuclei (see Ref. 10), 
averaged over the isotopes and independent of the spin di­
rections of the neutron and the nucleus, and one should mul­
tiply the result by m2/ 4 nn2, were m is the neutron mass. 

Substituting (6) into the first term of formula (4), 
factoring out e-L where 

L = 2 ~~k -4 (qik') 2a~jgk, (7) 
k 

and expanding the exponential expression remain­
ing in (6) into a series we obtain: 

N ( ')2 a2 (8) 
I 1 = 8Jta ,s- If j2 e-LO ( q) + Nz /f/2 e-L q~~ g: . 

Here A is the volume of an elementary cell, the 
first term containing the o function (which ap­
pears in the limiting case of an infinite crystal) 
determines the intensity of the regular Laue scat­
tering, while the second term determines the inten­
sity of the diffuse scattering. 

In calculating It terms in (8) are neglected 
which correspond to terms which appear in the ex­
pansion of the expression M ( Rs - Rs') eL and 
which contain products of two or more cosines. 
The discarded terms are much smaller than the 
term retained in (8) if the following condition holds 

(9) 

where km is the maximum value of k lyif\g in the 
first cell of the reciprocal lattice. In many cases 
condition (9) is satisfied for arbitrary q, and it is 
always satisfied for sufficiently small q (wiLl. the 
exception of directions for which cos ( q' ~) = 0 ) . 
It is evident that if it should turn out to be neces­
sary, it would not be difficult within the framework 
of the procedure outlined above to take into account 
also these discarded terms. 

For the calculation of I2 and I3 one may make 
use of the relations obtained from (2), (5) and (6): 

c~< exp (iq~> oR.- oR.,) 

=(q1k' jk2gk) ak [exp (ikR.)- exp (ikR.,)l M (Rs- R.,), 

c~ exp (iq1 , oR.- oR.,)=- (q1k'/k2gk) ak 

x [exp (- ikR.)- exp (- ikR.,)] M (Rs- R.,). (10) 

Substituting (1), (5) and (10) into the second and 
third terms in (4) we obtain: 

/2 + Ia =- N2 1f (f~- fi) + f" (fA- fs)l 

X e-L~a + N2 1 f - f 12 e-L__!_. (11) q2gq q A B gq 

In calculating I2 and I3 we have also neglected 
terms containing products ·Of two or more cosines. 
However it may be shown that if conditi.on (9) is 
satisfied for a given q then the neglected terms 
are much le~s than I3 (if L « 1) or It (if 
L ~ 1). 
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It follows from (4), (8), and (11) that the expres­
sion for the intensity of scattering by a disordered 
solution may be written in the form: 

I= 87t3 -~ If 12 e-LO (q) + N2 e~: I faq q~~' -fA+ fa 1
2• (12) 

In order to be able to apply formula (12) we 
must find expressions for the quantities aq and 
gq. We consider first the quantities aq which 
characterize the degree of deformation associated 
with the q-th fluctuation wave. For this purpose 
we shall make use of the conditions of equilibrium 
with respect to the displacement of the atoms of 
the solution. In the approximation of an elastic 
isotropic continuum the expression for the density 
F of the free energy of a solution, in which there 
is a non-uniform distribution of concentration 
oc ( r), may be written in the form ( cf. Ref. 12, 
part II, Ch. 1 ) : 

F = F 0 - xK'Dcu11 + fL (uii- 1/ 3 8iiuzz)2 + 1/ 2 Kui1, 

where i, j, and 1 denote Cartesian coordinates, 
Uij is the deformation tensor, F0 does not depend 
on uii and oc, k is the bulk modulus of elasticity, 
J.L is the shear modulus, oi· is the Kronecker 
delta. In this and in the fol~owing expressions it is 
understood that summation is to be carried out over 
repeated indices. From this we obtain the follow­
ing equation for the components of the stress 
tensor: 

cri/ = aF I au;j =- xKBco;j + Kull aij + 2[L (Uij- 1/a Oij Uzz). 
(13) 

In the case when oc is constant along the sample 
and uij = 0, Eq. (i3) enables us to relate K to the 
equilibrium change in the volume as the composi­
tion is changed. In this case uij ...... oij• and setting 
(13) equal to zero we find that K = uu/oc = (1/v) 
av /Be. If oc is a wave of fluctuations of composi­
tion along the x axis, then in planes perpendicular 
to this axis the displacements are equal to zero 
(the crystal boundaries do not move) and all the 
Uij with the exception of Uxx are equal to zero. 
Substituting in (13) Ck exp ( -ikRs) in place of oc, 
and the expression akCk exp ( -ikRs) obtained 
from (2) in place of Uxx, setting <rxx equal to 
zero and making use of the well known relations 
between k, J.1, and the Poisson ratio u, we obtain: 

Thus, in the approximation of an isotropic continu­
um, ak does not depend on k. 

In the case of a single crystal 

where :Aijlm is the elasticity tensor. In order to 
determine k1m we may, as above, consider the 
case when oc ( r) = const and <Tij = 0. The equa­
tion obtained from this shows that the k1m are 
equal to the result of dividing by oc the compo­
nents of the deformation tensor ulm which arises 
as a result of changing the composition by oc. 
Evidently the tensor k1m is completely determined 
if we know the dependence on the composition of 
the dimensions and the shape of the ideal elemen­
tary cell. If the fluctuation wave is directed along 
the X' axis with the unit vector n = k/k, then in 
the system of coordinates x'y'z', only Ux'x' ~ 0, 
Ux'y' ~ 0, Ux'z' ~ 0. The quantities <Tij are ex­
pressed in terms of the u1m by means of the for­
mula 

(15) 

Replacing oc and ux'x' by periodic functions and 
taking into account that 'd<rij/'dxj = 0 we obtain 

I from (15), (1), and (2) three equations for the akni, 
where n' = k/k : 

(16) 

Thus the ak may be determined if we know the 
moduli of elasticity and the dependence on the com­
position of the dimensions and the shape of the ele­
mentary cell. The expressions for ak become 
simplified for various specific structures. Thus 
in the case of cubic crystals 

and there exist only three different elastic moduli 

In this case, for directions of the type (100), ex­
pression (16) takes on the following form: 

(17) 

In determining the quantities ak for short wave­
lengths, the continuum approximation may no longer 
be used, and the atomic structure of the crystal 
must be taken into account explicitly. In the approx­
imation under discussion, where the relation be­
tween oRs and ck is assumed to be linear, the 
expression for the free energy of the solution con­
sidered as a function of the static displacements 
of the atoms ( positions of equilibrium for their 
vibrations) takes on the following form: 

F' = F~- Wss'i (cs'- c) oRsi + 1/2 Vss'ij 'ORsiDRs'j• (18) 

where the coefficients Wss'i and V ss'ij depend 
on the relative position of the lattice points s and 
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s', on the temperature and on c. The force Fs 
which acts on the s-th atom due to all the other 
atoms is equal to: 

Fsi =- 8F' I aoRsi =- Wss'i (cs'- c)+ Vss'ij oRs'j· (19) 

Substituting into (19) in place of Cs' - Cs and 
oR , . the partial ( k-th) waves appearing in the 

SJ ' t th expansions (1) and (2), and equatmg o zero e 
components of the vectors F S• we obtain: 

akn'iVss'ii exp (ik, Rs- Rs') 
(20) 

= (kji) Wss'i exp (ik, Rs- Rs') (i = 1, 2, 3). 

Restricting ourselves to the few nonvanishing con­
stants V ss'ij and Wss'i> we can express these 
constants in terms of the moduli of elasticity and 
of quantities which characterize the dependence of 
the dimensions and the shape of the cell on the con­
centration. Subsequently the ak will be determined 
for arbitrary k. 

We now go on to the determination of gk and 
to the investigation of the expressions obtained for 
I in various special cases. In accordance with (5), 
1/gk = I ck 12• For ideal and for weak solutions. 
(when the atoms are distributed among the lattice 
points at random) these quantities may be deter­
mined either directly from formula (1) (taking into 
account that c~ = cs = c, cscs' = 0 for s ;; s') or 
with the aid of the usual formulas of the thermody­
namic theory of fluctuations (cf. I): 

11gk=c(1-c)IN. 

Substituting this expression into (12) we shall 
find that the intensity of diffuse scattering Icp by 
ideal solutions is equ~ to: 

fcp = Nc (1- c) e-LI aqfqlq'l q2- fA+ fa j2 , (21) 

where the aq in various special cases are deter- . 
mined by formulas (14), (16), (17), and (20). For 
aq = 0 formula (21), and also the formula~;;iven 
below for non-ideal solutions, reduce to the<corre­
sponding formulas of Refs. I and II. Therefore in 
solutions with components having nearly equal 
atomic radii, and not too closely equal atomic fac­
tors ( for example in Ag -Au) one may use for­
mulas given in I and II for all values of q, with 
the exception of values lying in the immediate 
neighborhood of lattice points of the reciprocal 
lattice. 

In the case of non-ideal solutions, when the 
correlation between the occupation of different 
lattice points by atoms of different kinds is sig­
nificant, we have in accordance with (1): 

1 1 gk = lcJ2 = ~ [c (1 -c)-~ s (p) cos pk J .. (22) 
P+O 

Here p = Rs' - Rs take on the values of all the 
position vectors of the lattice, and the correlation 
parameters are 

s (p) = -(esc<:,)- c2), 

where the averaging is carried' out over all pairs 
of lattice points separated from one another by the 
distance p. In accordance with (12) and (22), Icp 
is in this case equal to: 

fcp 

(23) 
= N [ c ( 1 - c) - ] s (p) cos qp J e-L I aqfqi q 'I q2 - fA + fa '2 • 

P+o 

Formula (23) is a generalization of the well-known 
formula ( see, for example, Ref. 13) which expres­
ses I in terms of c and € (p) to the case 
when feometrical distortions are present. This 
formula also enables us to determine € (p) from 
the experimentally obtained distribution of inten­
sity of diffuse scattering taking geometrical dis­
tortions into account. For this one has to carry 
out the Fourier transformation of Icp divided by 
the last factor of formula (23). As a consequence 
of this the expressions for € ( p ) can be obtained 
from the corresponding expressions of Ref. 13 by 
making the following replacements in the latter: 

fA- fa~ fA- fa- aq(q1q'l q2, <24) 

i.e., 

1 • Iq,l - Qlk' ~-2 (25) s(p)=- 2 ~dkN- akf fii -fA+fa coskp, 

where in the course of integration k/271' take on 
values which lie inside the volume of an arbitrary 
elementary cell of the reciprocal lattice. 

As was shown in II, certain thermodynamic con­
stants (for example the energies of ordering) can 
be obtained directly from the experimentally-de­
termined distribution of diffuse scattering. The 
inclusion of geometrical distortions in this method 
will also reduce to carrying out the replacement 
(24) in formulas (23) of II. The correction for the 
distortions is particularly important in the case of 
decaying solutions with appreciably different 
atomic radii. It should be noted that in the case 
of weak dependence of v on c and of not too simi­
lar atomic scattering factors ( aq 111 < 0.1 I fA -fBI) 
the correction due to the distortions in the formu-
las for € (p) and for the energies of ordering is 
significant only for small q ( q « km ) when the 
macroscopic formulas (16) and (17) can be used 
for a . In the more general case when the cor­
rectio~ is significant also for large q, aq should 
be found with the aid of formula (20). 

If the constants characterizing the thermody-
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namic properties of the solution, e.g. the energies 
of ordering, are known, then I(/) may be calculated 
with the aid of the formulas of II upon making the 
replacement (24). In the general case, the deter­
mination of I(/) by this method will not be suffi­
ciently accurate, since it is based on a simplified 
statistical model of the solution. However, in the 
neighborhood of the lattice points of the reciprocal 
lattice (where the distortions play the most signi­
ficant role), the evaluation of I(/) from the ther­
modynamic data can be carried out quite accurately. 
In this case [compare (9) of I with (5) of this ar­
ticle ] ~ is determined for cubic crystals by 
means of the following formula: 

(26) 

Here V is the volume of the crystal, (/)cc = 
d2qJ /dc2, qJ is the thermodynamic potential per 
unit volume, the derivative with respect to c is 
calculated for. a given number of atoms (and not 
for a given volume ) , and {3 is of the order of 
magnitude of ( kT It::..) r~, where r 0 is the inter­
atomic distance. Substituting (26) into (12) we find 
that for q « km 

(27) 

In the general case of crystals of non cubic sym­
metry, {3q2 is replaced by the sum f3ijqiqj. If the 
dependence on concentration of the activity aA of 
atoms A in solution AB is known, then (/)cc 
may be found from the formula: 

kT 1 daA 
'f'cc = (1-c) Ll a;:Tc. 

Thus, for q- 0, I may be calculated with the aid 
of parameters obtained from independent experi­
mental data on the dependence of aA on c, on 
the moduli of elasticity, and on the dependence on 
concentration of the dimensions and shape of the 
elementary cell. Within a certain region q « km, 
in accordance with (27), Icp depends only on the 
single unknown parameter {3. It is evident that 
formula (27) also provides a method for an inde­
pendent determination of activities from experi­
mental data obtained from x-ray photographs. 

Geometrical distortions are particularly signi­
ficant if the molar volume depends strongly on c 
( aq is large), and if fA and fB ~e nearly equal. 
Even if aq « 1 and I fA-fBI « If I, still for 
sufficiently small q, i.e., in the vicinity of the 
lattice points of the reciprocal lattice, the first 
term in the binomials of formulas (21), (23), or 
(27), which is determined by the distortions, be­
comes dominant. In this case, just as in the case 
of weak solutions discussed by Huang, 5 Icp tends 

to infinity like q-2 when a lattice point of the re­
ciprocal lattice is approached. The coefficient of 
q-2 is proportional to q~ = ( 41TA-t sin 8 )2, where 
A is the wavelength and 28 is the scattering 
angle. Therefore, the intensity, divided by 
I fA - fB 12, of the background associated with dis­
tortions, in contrast to the intensity of the back­
ground associated with a difference in the atomic 
factors, does not recur periodically in the differ­
ent cells of the reciprocal lattice, but grows with 
an increase in 8 and with a decrease in A (i.e., 
with an increase in the cell index). For small 8, 
when qt = q, Icp in accordance with (27) tends to 
a constant limit and does not vary proportionally 
to q - 2• The term in Icp which is proportional to 
q - 2 contains cos2 qJ as a factor where qJ is the 
angle between q' and qt. Therefore, for small 
q, Icp depends appreciably not only on the distance 
to the nearest lattice point of the reciprocal lattice, 
but also on the mutual orientation of the vectors q' 
and qt. Since aq also changes appreciably as the 
orientation of q with respect to the crystal axes 
is varied, the above behavior of Icp is determined 
not only by the factor cos2 qJ, but also by the factor 
~. and will be different in the vicinity of the dif­
ferent lattice points of the reciprocal lattice. It 
should be noted that the small terms neglected in 
the derivation of formulas (8) and (11) have a dif­
ferent dependence on the direction of q than the 
terms which are retained; in particular, they do 
not vanish when cos cp = 0. Therefore the char­
acteristic form of the isodiffusion curves will be 
somewhat altered if we take into account the neg­
lected terms, whose relative importance in ac­
cordance with (9) increases with increasing q and 
becomes insignificant as q- 0. The cross prod­
ucts obtained on squaring the binomials in formu­
las (21), (23), and (27) change sign when q is re­
placed by - q and lead to an asymmetry in the 
distribution of intensity of diffuse scattering with 
respect to the lattice points of the reciprocal lat­
tice. 

It can be seen from formula (21) that, even in 
the case of ideal solutions, the dependence of Icp 
on concentration is, generally speaking, not sim­
ple, since it is determined b:r_ the factor c ( 1 - c), 
by the linear dependence of f on c, and also by 
the dependence on the concentration of aq which 
is different for different solutions. If the correla­
tion in the solution ·is significant, then the depend­
ence of Icp on the concentration, as may be seen 
from (23) and (27), becomes even more compli­
cated, owing to the fact that E (p) and (/)cc de­
pend strongly on c. Moreover, Icp also depends 
strongly on the annealing temperature T' at which 
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short range order is established. Apparently, for 
small q, a typical behavior will be an increase of 
Icp with diminishing T' for decaying solutions, 
and an increase of Icp for solutions that are be­
coming ordered (although exceptions are possible). 

The intensity of diffuse scattering in the vicin­
ity of lattice points of the reciprocal lattice be­
comes particularly great for solutions which are 
in the neighborhood of a critical point on the decay 
curve (point K in Fig. 2 of I). As is well known, 
cp cc = 0 at a critical point. Therefore, right at 
the critical point, Icp increases for small q pro­
portionally to q -.t since {3q2 « 1 ( {3k~ ,.... 1 ) for 
q « km and in this case Icp is considerably 
larger than, say, for ideal solutions.* In the neigh-· 
borhood of the critical point 'Pee is very small 
and for small q, when {3q2 < 'Pee• Icp is propor­
tional to q-2, but with a very large coefficient of 
proportionality. t 
If the sizes of the atoms A and B are nearly 
equal and aq is small, then the dependence of Icp 
on q agrees with that obtained in I for not too 
small q, when I aqfqt/q I « I fA - fB I (but q « 
~). 

In order to calculate L, which determines the 
reduction in the intensity of the regular reflections, 
it is necessary in the general case, as follows from 
(7), to know ak and ~ not only for long, but 
also for short wavelengths, i.e., it is necessary to 
utilize a specific atomic model. Such calculations 
will be carried out elsewhere. Here we shall 
merely quote the formula for L obtained by Huangli 
for weak solutions (and also applicable to ideal 
solutions) with a face-centered cubic lattice and 
improved in accordance with formula (14) by the 
addition of the factor ( 1 + a) 2/9 ( 1 - a) 2, which 
takes into account the difference in the displace­
ments brought about by a point defect in an infinite 
and a finite crystal ( cf. Ref. 14 ): 

( 1 + a)2 ( 1 iJv)2 d~ . 2 =0.234c(J-c) 1 _<1 vaG A2 Sln (j. (28) 

*For crystals of finite size in the region of very small 
q (qa"' 1, where a are the dimensions of the crystal) the 
formulas obtained above cease to hold at the critical point. 
The region indicated above in the space of the reciprocal 
lattice is occupied by extended Laue reflection as a result 
of diffraction by a crystal of finite size. 

tit should be noted that in the neighborhood of the critical 
point it is necessary to satisfy in place of the criterion (9) a 
more strict criterion, which is obtained from (9) by replacing 
km by Vqicc /(3. 

Here u~ is the mean square of the i-th compo­
nent of the static displacements of the atom, and 
d0 is the length of an edge of the cubic cell. In 
deriving formula (28) atomic structure was taken 
into account explicitly, but the displacements of 
each atom were calculated in the approximation 
of an isotropic continuum and may differ consid­
erably from the true displacements. In the case 
of non-ideal solutions L, generally speaking, de­
creases when short-range order, which is charac­
teristic of decaying solutions, is established. 

The evaluation of L can be carried out without 
taking atomic structure into account if the solution 
is near a critical point on the decay curve. Since, 
in accordance with (26), 1/~ decreases rapidly 
in this case (maximum value at k = 0 ), the re­
gion of small · k is the most important one in the 
summation (7). Making the transition in (7) from 
summation to integration over k, extending the 
region of integration to infinity, and making use 
of (14), we find in the approximation of the iso­
tropic continuum that near the critical point 

81t (1 + a)2 kT 1 . 2 
L=2'i1-a lfm-i3A2smfi. 

rcc' 

In the case of specific crystals, it is not diffi­
cult to obtain L near a critical point, even without 
using the approximation of an isotropic continuum, 
by making use of (16) or (17) and by carrying out 
numerical integration over the angles. The above 
formula allows us to calculate L if the value of 
{3 has been previously determined from the data 
on diffuse scattering. As the critical point is ap­
proached the intensity of regular reflection is re­
duced in proportion to 

exp (- const ?rc -'1'). 

This law ceases to hold in the immediate neighbor­
hood of the critical point L > 1 and the stricter 
criterion (9) (see notet) is no longer satisfied. 

It follows from (7), (16), and (20) that for the 
same sin 9/).. (same q1 ), but for different direc­
tions of qto the values of L for non-cubic crys­
tals may differ appreciably. Formula (28), while 
giving a correct estimate of L, may, generally 
speaking, lead to appreciable quantitative error. 
An evaluation of L, taking atomic structure into 
account by means of formulas (7) and (20), yields 
an improved expression for L and permits us to 
investigate its dependence on the direction of q1 

and on the correlation parameters. 
Expression (27) for Icp in the vicinity of regu­

lar reflections was compared with experimental 
data by Borie9 for a disordered solution Cu3Au 
quenched at 600°C. The value of aq for q direc-



146 M. A. KRIVOGLAZ 

ted parallel to a cubic axis is computed by means 
of formula (1 7). In doing this it was assumed in 
accordance with Ageev and Shoikhet15 that 
v-18v/8c = 0.4, and in accordance with the data 
of Siegel16 (for ~ 400°C. ) it was assumed that 
( cu + 2c12 )/3cu = 0.87. With the aid of thermo­
dynamic data on the activity of Cu in Cu- Au 
(Ref. 17) it was found that at 600°C. ep00 = 13kT/~. 
For small q it was possible to neglect {3q2 in 
comparison with ep00 • For the ratio of the atomic 
factors corresponding to the reflection ( 200 ), the 
value fAulfcu = 3.0 was adopted. According to 
Borie, 9 the factor e-L for the reflection under 
discussion practically does not differ from unity 
( ~ 0. 96). With the aid of these values for the 
parameters, we have calculated by means of for­
mula (27) the theoretical curve of the dependence 
of I<f:>/Nfbu on q/qt for the direction ( 100) in 
the reciprocal lattice in the vicinity of the ( 200) 
reflection (the solid curve in the figure ) . In the 
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same figure we have also shown the experimental 
curve (dotted line) obtained by Borie9 after sub­
tracting the Compton and the thermal scattering. 
The difference between the calculated and the 
measured values of I<P lies within the limits of 
error of the experimental determination of the 
parameters of the theory (the inaccuracy in the 
determination of ep00 may be particularly signi­
ficant). Therefore the agreement between theory 
and experiment may be considered to be good, 
particularly if we take into account the fact that 
in constructing the theoretical curve all the par am­
eters have been determined from independent ex­
perimental data. 

For the same solution Cu3Au we have also 
evaluated the factor 2B with the aid of formula 
(28). In doing this we have assumed a = 0.36 
(calculated on the assumption that a depends 
linearly on c). The calculated value of 2B is 

equal to 0.43A - 2, while the measured value is 
equal to 0.42 A - 2 according to the data of Borie, 9 

and is equal to 0.34A - 2 according to the data of 
Herb stein, Borie and Auerbach. 3 The agreement 
of the measured values of 2B with those calcu­
lated with the aid of the formula for ideal solutions 
obtained in the approximation of an isotropic con­
tinuum is apparently related to the smaller influ­
ence of short range order on L than on I<P, and 
also to a partial compensation of errors introduced 
by the different approximations. 

2. ORDERED SOLUTIONS 

It is not difficult to generalize the results ob­
tained above to the case of ordered solutions of 
arbitrary structure having a center of symmetry. 
The distribution of atoms A and B among the 
lattice points of the solution may, as before, be 
characterized by the numbers cs or by their 
Fourier components <~. However, in ordered 
solutions the lattice is subdivided into lattice 
points of several kinds and the average atomic con­
centrations cy of atoms A on the lattice points 
of different kinds y become different. The coef­
ficients w and V in the expansion (18) for the 
free energy now depend not only on the distance 
between the lattice points s and s', but also on 
the kind of lattice points. Therefore the wave of 
displacements of the lattice corresponding to the 
k-th fluctuation wave has different amplitudes aky 
[ see formula (2) ] for lattice points of different 
kinds. These amplitudes are determined from a 
system of linear equations which are obtained by 
substituting values corresponding to the k-th wave 
into expressions of the type (19) for lattice points 
of different sorts, in place of cs- cy and oRs' j', 
and by equating F si to zero: 

1 I Ql;_Y.' 1 

iVr1'iini-r'--f exp (ik, Rs -- Rs') = wiJ'i exp (ik, Rs- Rs') 
(29) 

In the limit of long wavelengths, it may be eas­
ily seen that aky for different y are the same 
and, as before, are determined by formula (16) of 
the theory of elasticity. 

In decomposing the atomic factors into their 
average values and deviations from the average in 
an ordered crystal, one must introduce the average 
atomic factors £;, = cyfA + ( 1 - cy) fB for lattice 
points of each kind. The averaged structure ob­
tained in this way possesses lower symmetry than 
the solution with a disordered distribution of atoms 
among the lattice points of the same lattice, as a 
result of which each elementary cell of the recip­
rocal lattice of the above disordered solution will 
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contain lattice points corresponding to superstruc­
tural reflections, in addition to the lattice points 
corresponding to structural reflections (which re­
main when disordering takes place). With the aid 
of formulas (3) and (2), the expression for the in­
tensity of scattering by an ordered solution in the 
approximation adopted above may be written in the 
form:* 

v-1 , 

21 "" • QtQz 'j2 +No LJ cqzfz-2 aq11 -v(fA-fs)Cqo. 
z~o Qz 

(30) 

Here N0 is the number of elementary cells of the 
ordered solution; !::..' is the volume of these cells; 
the index l denotes lattice points in any cell of 
the reciprocal lattice of the above solution which 
are characterized by the vectors Kt (with the 
value l = 0 corresponding to a structural reflec­
tion); <{£ = q1 - 27TK~ is the vector q1 "reduced" 
to one of the elementary cells of the reciprocal 
lattice of the ordered crystal lying in the central 
elementary cell of the disordered crystal; Cql is 
the Fourier coefficient of the quantities cs cor­
responding to the vector <{£; aq1.1 is the coeffi­
cient aqy for lattice points of the first kind 
( y = 1) corresponding to this vector; 

fz = ~ fr exp (27til(zhy) exp (- Lyj2) 
y=l 

is the structure factor for the l-th reflection; 
v is the number of lattice points in a cell; hy is 
a vector drawn from the central lattice point of the 
cell to the lattice point of index y; 

v 

y=l 

( f1- fl as q - 0 ) , and exp ( - Ly /2 ) is a factor 
which takes into account the reduction in the scat­
tering amplitude by atoms situated at lattice points 
of the y kind, owing to geometrical distortions. 
Ly are different for lattice points of different 
kind. In the interest of brevity we shall not give 
here formulas for these quantities. (They may be 
determined experimentally from the reduction in 
the intensity of lines on an x-ray photograph by 
means of the usual methods of analyzing such x-ray 
photographs.) We note that Ly .... (sin 0 /A. )2 and 
that for non-cubic crystals they are anisotropic. 

*In the discussion of ordered solutions it is assumed that 
there are no anti-phase domains in the crystal. The existence 
of such non-equilibrium domains, which arise if the relaxation 
times for ordering are large, leads to a smearing of the inten­
sity distribution. 

In calculating the average value of (30) it should 
be kept in mind that, in contrast to the case of dis- · 
ordered solutions, nonzero values are obtained not 
only for mean squares but also for the mean values 
of the products of the Fourier components cq with 
different Ql and qj which, however, correspond 
to the same value of the vector ~· These mean 
values can be easily expressed in terms of the cor­
relation parameters, starting with formula (1) for 
ck (in which in the terms involving lattice points 
of each kind one should replace c by the corre­
sponding value of cy): 

v • 
lcqzl2 = !v~ [cy(l-cy)-~ sy(p)cosqzp], 

y-1 P+O 

Here Ql - qj = 27T ( Kj - Kt), while the correlation 
parameters are given by 

where the averaging is carried out over pairs of 
lattice points separated from each other by the dis­
tance p, while s is a lattice point of the y kind. 
Substituting (31) into (30) we obtain 

v-1 v 

I= 81t3 ~lfzl2o(qz) + ~o {~ ~ [c-.;: (I-cy) 
l l=O y=l 

- ~ ey (p) cos Qzp] [aqzif;qlq;q!2 - v (fA- fs) ozoJ2 
P+O 

v-1 v 

+ ~ ~ [cy (I - cy) cos (27thy, Kz- K1) 
Z,j=l y=l 

- ~ ey (p) cos (q 1p + 27thy, Kz- KJ)l 
P+O 

X [aqllf; q1q'1q!2- v (fA- fs) Ozol 

X [aqilf;qlqiq/2 -'I (fA- f B) Oj0]. (32) 

Thus, just as in the case of absence of distor­
tions, the scattering intensity is expressed in 
terms of the concentrations on lattice points of dif­
ferent kinds and in terms of the correlation param­
eters. Formula (32) together with equations (29) 
~nables us to determine Icp from given values of 
cy and E"y (p) and also enables us, in a number 
of cases, to determine E"y (p) (or certain combi­
nations of them) from an experimentally deter­
mined intensity distribution Icp. From (32) it can 
be seen that in the neighborhood of both the struc­
tural and the superstructural reflections Icp in­
creases proportionally to q - 2• The principal 
terms proportional to q - 2 may be represented in 
the neighborhood of the lattice points of the recip-
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rocal lattice in a simple form if one makes use of 
formula (26) for I c<l£ 12: 

l.p=(Nofd')a:z(qlq'z)2 ql'lfzl2 kT(<p~c+ ~q2t1 • (33) 

As may be seen from (33), the intensity of this part 
of the diffuse scattering, just like the intensity of 
the corresponding regular reflection, is propor­
tional to the square of the modulus of the structure 
factor f,. If I llqffl I « I fA-fBI. then in the 
neighborhood of structural reflections one may, as 
before, use formula (27) -for the determination of 
I¢ (and not only of its part proportional to q-2 ), 

i.e , one may determine I¢ with the aid of inde­
pendent thermodynamic measurements. 

For a more detailed investigation of the depend­
ence of I¢ on the temperature in the vicinity of 
regular reflections it is convenient to introduce 
parameters of long-range order. Such a discus­
sion will be carried out for the sake of simplicity 
for ordered solutions with two lattice points in an 
elementary cell (for example solutions of the type 
of {l-brass or NaGl), in which one may restrict 
oneself to specifying a single long-range order 
parameter TJ. In this case one may characterize 
the distribution of atoms A and B among the 
lattice points of the lattice by specifying the num­
bers ct and TJt• where t is the cell index, Ct 

is equal to the arithmetic mean of the numbers cs 
for the two lattice points of the cell, and Tit is 
equal to the difference of these numbers. The 
average values of the quantities Ct and T/t coin­
cide with c and TJ (which are related to cy by 
the expressions c1 = e + TJ/2, c2 = c - TJ/2). In 
place of ct and TJ t one may introduce their 
Fourier components eft and Tlk for k/211' lying 
in the first cell of the reciprocal lattice of the or­
dered crystal. Then instead of (2) the c5Rs are 
determined by the formula 

oRs = ~ pyakk'k-2i [c~ exp (- ikRs)- c~· exp (ikR.,)l 
k 

+ ~p~bkk'k- 2i[Y1kexp (-ikRs)-'Yj~exp(ikRs)]. (34) 
k 

Here Py and pY reduce to unity as k - 0 and 
ak• as in the case of disordered solutions, is de­
termined by formulas (16), (17), while bk is de­
termined by analogous formulas in which c is 
replaced by TJ. 

Evaluating the average value of ( 4) by means of 
(34) and of the Gaussian probability distribution 
for ck and Tlk [formula ( 9) of I ) , in the same 
way in which this was done for disordered solu­
tions, we find that, in the neighborhood of struc­
tural reflections, I<f> is equal to 

In the neighborhood of superstructural reflections I<!> is given by the formula 

=.!!_ (IA-fB)•kT [,' '2 (- q,q'\2_ 2 q,q'( q,q'-) 
I <P 4C1 (rp~11 + aq') ('f~c + ~'q2)- ('P~c + yq•)2 (:Pee+~ q ) 1 'Yjbq q• ) 2 Vhe + yq ) 'Yjaq If Yjbq {/' 1 

-+- 2 2 2 (q,q')2] N (fA- /B)• kT 
+ (:;>1111 • rx.q )aq'YI -q.- = M(' + 2)( ' + 3, •)-( ' +' 2)2 'Pr;11 aq 'Pee • q 'P11c (Q 

X [r;;' + W q2 + 2 ( ,,/ ..L yq2) y;a q,q' + (·-' + rx.q2) a2-r.2 (~] 
'CC , 1JC l , j Q q2 ffl7l . q l q4 • 

(36) 

In the above, q/211' characterizes in both cases 
the deviation of a point in the space of the recipro­
cal lattice from the corresponding lattice point. In 
the expressions, which appear in (35) and (36) after 
the sign of approximate equality, terms containing 
bq have been neglected. For small q these terms 
are proportional to E2, where E is a parameter 
which characterizes the difference in the atomic 
radii of atoms A and B in the solution ( for 
small TJbq they are also proportional to TJ), while 
3.q "' E. Therefore the retention of terms contain­
ing bq would not be quite consistent within the 
framework of the approximation under discussion, 

when fluctuations in the short-range order param­
eters, which also lead to effects proportional to E2, 

are not taken into account (the short range order 
itself is, of course, taken into account). The pos­
sibility of neglecting the above terms is justified 
by the observation that for most solutions (for ex­
ample AuCu) v changes considerably less as a 
result of ordering than of going over from compo­
nent A to B. However, cases are possible when 
taking into acc<111Ilt terms containing bq would im­
prove the expression for 1<1>. 

For sufficiently small q one may neglect terms 
on the order of q2 compared to <Pee• <P~c and 
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cp~TJ· In this case the following expression appears 
in the denominator of formula (35) 

' '2 ' kT d In aA 
'f'cc - 'f~c / 9~~ = 'f'cc = (1 _c)~ ~ 

where in the evaluation of the derivative d/dc 
(in contrast to 8/Bc) the dependenc·e of TJ on c 
is taken into account. At the temperature T0 of 
the phase transition of the second kind into the 
ordered state, Icp varies sharply in the vicinity 
of structural reflections, but remains finite. The 
dependence of Icp on q in the vicinity of super­
structural reflections close to the temperature T 0 

differs essentially from the corresponding depend­
ence near structural reflections. While near 
structural reflections Icp always contains a term 
proportional to q - 2, near points of the reciprocal 
lattice corresponding to superstructural reflec­
tions for T > T0 ( TJ = 0) such a term is missing 
entirely, while for T < T 0 it is proportional to 
TJ4 ( CfJ~ml CfJcc ""' TJ2' CfJ~cl CfJcc ~ TJ ) and begins to play 
an essential role only for very small q, when 
q/q1 ~ aqTJ2• For T > T0, the expression for Icp 
turns out to be the same as in the absence of geo­
metrical distortions [see formula (10) in I J. Since 
at T =To cp~TJ = 0 and cp~c = 0, in the neighbor­
hood of this temperature the first term in (36) de­
termines the anomalously large scattering in the 
neighborhood of superstructural reflection which 
was discussed in Ref. 18 for single component 
crystals and in I for solid solutions. 

At the critical point at which the curve of phase 
transitions of the second kind goes over into the 
decay curve (point 0 in Fig. 1 of I) the condition19 

cp~ccpijTJ = cp~c is fulfilled in the ordered phase. 
Therefore, as is evident from (35), in the neighbor­
hood of this point, Icp in the ordered phase be­
comes especially large not only near superstruc­
tural reflections, but also near structural reflec­
tions where the terms ~ q-2 are also anomalously 
large. In the disordered phase, CfJ~c = 0 and Icp 
must be considerably smaller in the vicinity of 
structUral reflections. 

The expression for Icp assumes a simple form 
also in the case of almost completely ordered solu­
tions ( T « T 0 ) • In this case, as shown by the au­
thor, 20 one may neglect Ey (p) in comparison with 
the proddcts cy ( 1 - cy) (also small). Therefore 
in the general formula (32) one may neglect terms 
containing Ey ( p ) , so that Icp turns out to be ex­
pressed only in terms of the parameters cy, which 
characterize the long-range order. In the special 
case of structures considered above, which are 
characterized by a single long range order param­
eter, we shall obtain from (32) 

lq, =N [c (I- c)-·r/j4] {[aqf{q1q')/q2-f A+ fBF 

+(fA- {B)2 a~, (QlQ's)2fq'4}, (37) 

where q/27T and qs/27T characterize distances to 
lattice points corresponding to structural and 
superstructural reflections. For TJ l'::: 1, as was 
shown by the author, 20 c ( 1 - c ) - TJ 2 I 4, and con­
sequently also lcp, decrease exponentially as the 
temperature is lowered. 

The formulas obtained above have been derived 
for binary substitution solutions. They may also 
be applied to the determination of Icp in the vic in­
ity of regular reflections by occlusion solutions in 
which atoms are occluded between the lattice points 
of the crystalline lattice of the pure metal. By 
means of the method developed above it is not dif­
ficult to obtain formulas for Icp in such solutions, 
valid for arbitrary q. We note that with the aid of 
formula (21) it is also possible to determine the 
intensity of scattering by vacancies (or by com­
plexes of vacancies ) if c is interpreted as their 
concentration ( equilibrium or non -equilibrium). 
The method developed above may also be used for 
the investigation of scattering by more complicated 
defects, for example by precipitations formed on 
aging or by dislocations. 

In conclusion we note that the method used here, 
in which the geometrical distortions are related to 
fluctuations of composition or of internal param­
eters, may also be employed for the solution of 
other problems related to geometrical distortions 
in solution, for example for the determination of 
its electrical resistance, of the elastic energy of 
the distortions, of the mean squared displacements 
of the atoms, etc. 
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