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THE theory of neutron thermalization in a heavy (atomic weight M » 1) monoatomic gas with constant 
mean free path 71. and constant neutron lifetime T has been discussed in a number of papers.1- 3 How­
ever, the majority of the results refers to the energy distribution only. The space-energy distribution 
function has been found only in the region of relativelly large energies.2 In the case of weak absorption 
this problem. can be solved exactly. 

The equation for the space-energy distribution function2 may be written as follows: 

a.t, (r x) a•.j! (r x) 
-IX~(r, x) + ~xv2~.(r, x) + (3- 2x2) ~ + x ----ax:-l - = 0, (1) 

where x2 is the neutron energy in units of kT (T- temperature of the moderator), 1f; (r, x) is the space­
energy distribution function divided by x2e -x2, and m is the neutron mass. 

For a moderator of finite dimensions one may obtain a solutionofEq. (1) in the form of an expansion in 
a complete set of orthonormal functions R 1. (r) of the Laplacian for the corresponding boundary value 
problem [V 2R!(r) + Q_tR.t(r) = 0], i.e., 

'\1 (r, x) = ~ R.z (r) n1 (x). 
I 

(2) 

then each of the functions n1. (x) should satisfy the equation 

xd2nz!dx2 + (3- 2x2 ) dnz/dx- (IX+~ x Q1) n1 = 0. (3) 

Making use of the requirement that n! (x) be finite as x - 0, this equation may be transformed into an 
integral equation of the Volterra type 

X 

n1 (x) = C1<I> (a, 2, x2) + IX~ n1 (t) K (x, t) dt, 
0 

1 
K (x, t) = 2 I' (a) t 2e-t' ['¥(a, 2, t 2 ) <l> (a, 2, x2 )- <I> (a, 2, t 2 ) 'Y (a, 2, x2)J, 

the solution of which, as is well known, is of the form 
X 

m-o 
Cf>o(X)=<D(a,2,x2 ); Cf>m+l(x) = ~ Cf>m(t)K(x,t)dt. 

0 

Here ~ (a, b, z) is confluent hypergeometric function and 
CIO 

'Y (a, b, z) = f (~) ~ e-ztta-1 (} + t)b-a-Idt 
c 

(4) 

(5) 
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is the other linearly independent solution of the hypergeometric equation; a= POt/4. 
The normalization constants Ct may be obtained by comparing the assymptotic form of nR.(x) for 

large x with the results of a calculation in the Fermi Age approximation. Thus, neglecting absorption 
for the sake of simplicity, one has for the case of a unit intensity source of neutrons at the point r = r 0 

in the age approximation, the following 
:AM./m x• 

1\iAge(r, x) = 2- V 2kT "Xi"] 
l 

where Xo is the source neutrons speed. Hence 

(
X )~Oz/2 

R, (r) Xo , 

( ) :AM • /m ""' -~o112 (~nz) (~n, 2 2) 9 r, X= TV 2kT ..:::JRz(ro)R,(r)Xo r 4 <P 4• , X 
I 

(6) 

(7) 

In the case of a source located in an infinite homogeneous medium the sum over R. must be replaced 
by the corresponding integral. 

A detailed discussion of applications of the above results to various special cases will be published 
later. 

In conclusion I express deep gratitude to F. L. Shapiro for valuable discussions in the process of this 
work. 
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FoR ,8-decay, particularly for forbidden transitions, the action of the nuclear field is of importance. 
As in Ref. 1, we take for the electron wave function 

(C?•) C?•~= [«o + iprrx.1 + i (ar) (an) ~cl u~, 
1\ie = x. , x; = [~o + ipr~1 + i (ar) (an) «c](an) u~. 

where 

p v""i"" . I I ""i"" 8 v""i"" 3 rrr 3 n = -, «o = 2- ze- a_,g 1• ~o = I -2- f1e-1•, rx.1 = -2 - e-IB_,g 2• ~1 = V -2 - .,...- e-IB,f2, p pe - pe pe pr - pe zpr 

~c = v 2;e} (e-IB,g1- e-za_,g_2), rt.c = V 2;e ~ (e-IB_,f -1 - e-ZB,f2) 

(1) 

(me = c = 'fi = 1), gK, fK are the inside-the-nucleus solutions of the radial Dirac equation joined with the 
outside solutions at r = r 0; 6K is the phase.2 We write the ,8-interaction Hamiltonian as follows 

(2) 

(summation over i = S, T, V, A, P). If the two-component neutrino theory3- 5 holds, then emission of an 
antineutrino together with an electron corresponds to gi = 0, whereas emission of a neutrino corresponds 
to gi = 0. 




