${ }^{1}$ E. Fermi and L. Marshall, Phys. Rev. 72, 1139 (1947).
${ }^{2}$ T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1954).
${ }^{3}$ L. D. Landau, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 405 (1957), Soviet Phys. JETP 5, 336 (1957).
${ }^{4}$ Ia. B. Zel'dovich, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1488 (1957), Soviet Phys. JETP 6, 1148 (1958).
${ }^{5}$ B. L. Ioffe, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 1246 (1957), Soviet Phys. JETP 5, 1015 (1957).
${ }^{6}$ V. G. Solov'ev, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 537 (1957), Soviet Phys. JETP 6, 419 (1958).
Translated by G. E. Brown
316

SPACE-ENERGY DISTRIBUTION OF NEUTRONS IN A HEAVY GASEOUS MODERATOR

M. V. KAZARNOVSKII

P. N. Lebedev Institute of Physics, Academy of Sciences, U.S.S.R.

Submitted to JETP editor September 27, 1957
J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1533-1535 (December, 1957)

THE theory of neutron thermalization in a heavy (atomic weight $M \gg 1$) monoatomic gas with constant mean free path λ and constant neutron lifetime τ has been discussed in a number of papers. ${ }^{1-3}$ However, the majority of the results refers to the energy distribution only. The space-energy distribution function has been found only in the region of relatively large energies. ${ }^{2}$ In the case of weak absorption this problem can be solved exactly.

The equation for the space-energy distribution function ${ }^{2}$ may be written as follows:

$$
\begin{equation*}
-\alpha \psi(\mathbf{r}, x)+\beta x \nabla^{2} \psi(\mathbf{r}, x)+\left(3-2 x^{2}\right) \frac{\partial \psi(\mathbf{r}, x)}{\partial x}+x \frac{\partial^{2} \psi(\mathbf{r}, x)}{\partial x^{2}}=0, \quad \alpha=(2 M \lambda / \tau) \sqrt{m / 2 k T}, \quad \beta=2 M \lambda^{2} / 3 \tag{1}
\end{equation*}
$$

where x^{2} is the neutron energy in units of $k T$ (T - temperature of the moderator), $\psi(r, x)$ is the spaceenergy distribution function divided by $x^{2} e^{-x^{2}}$, and m is the neutron mass.

For a moderator of finite dimensions one may obtain a solution of Eq. (1) in the form of an expansion in a complete set of orthonormal functions $R_{\ell}(r)$ of the Laplacian for the corresponding boundary value problem $\left[\nabla^{2} R_{\ell}(\mathbf{r})+\Omega_{\ell} R_{\ell}(\mathbf{r})=0\right]$, i.e.,

$$
\begin{equation*}
\psi(\mathbf{r}, x)=\sum_{l} R_{l}(\mathbf{r}) n_{l}(x) \tag{2}
\end{equation*}
$$

then each of the functions $\mathrm{n}_{\boldsymbol{\ell}}(\mathrm{x})$ should satisfy the equation

$$
\begin{equation*}
x d^{2} n_{l} / d x^{2}+\left(3-2 x^{2}\right) d n_{l} / d x-\left(\alpha+\beta x \Omega_{l}\right) n_{l}=0 \tag{3}
\end{equation*}
$$

Making use of the requirement that $n_{\ell}(x)$ be finite as $x \rightarrow 0$, this equation may be transformed into an integral equation of the Volterra type

$$
\begin{gather*}
n_{l}(x)=C_{l} \Phi\left(a, 2, x^{2}\right)+\alpha \int_{0}^{x} n_{l}(t) K(x, t) d t \tag{4}\\
K(x, t)=\frac{1}{2} \Gamma(a) t^{2} e^{-t^{2}}\left[\Psi\left(a, 2, t^{2}\right) \Phi\left(a, 2, x^{2}\right)-\Phi\left(a, 2, t^{2}\right) \Psi\left(a, 2, x^{2}\right)\right]
\end{gather*}
$$

the solution of which, as is well known, is of the form

$$
\begin{equation*}
n_{l}(x)=C_{l} \sum_{m=0}^{\infty} \alpha^{m} \varphi_{m}(x), \quad \varphi_{0}(x)=\Phi\left(a, 2, x^{2}\right) ; \quad \varphi_{m+1}(x)=\int_{0}^{x} \varphi_{m}(t) K(x, t) d t . \tag{5}
\end{equation*}
$$

Here $\Phi(\mathrm{a}, \mathrm{b}, \mathrm{z})$ is confluent hypergeometric function and

$$
\Psi(a, b, z)=\frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{--z t}+a-1(1+t)^{b-a-1} d t
$$

is the other linearly independent solution of the hypergeometric equation; $a=\beta \Omega_{\ell} / 4$.
The normalization constants C_{ℓ} may be obtained by comparing the assymptotic form of $n_{\ell}(x)$ for large x with the results of a calculation in the Fermi Age approximation. Thus, neglecting absorption for the sake of simplicity, one has for the case of a unit intensity source of neutrons at the point $\mathbf{r}=\mathbf{r}_{0}$ in the age approximation, the following

$$
\begin{equation*}
\Psi_{\mathrm{Age}}(\mathrm{r}, x)=\frac{\lambda M}{2} \sqrt{\frac{m}{2 k T}} \cdot \frac{x^{2}}{x^{4}} \sum_{l} \quad R_{l}(\mathbf{r})\left(\frac{x}{x_{0}}\right)^{\beta \Omega_{l} / 2}, \tag{6}
\end{equation*}
$$

where x_{0} is the source neutrons speed. Hence

$$
\begin{equation*}
\psi(\mathbf{r}, x)=\frac{\lambda M}{2} \sqrt{\frac{m}{2 k T}} \sum_{l} R_{l}\left(\mathbf{r}_{0}\right) R_{l}(\mathbf{r}) x_{0}^{-\beta \Omega_{l} / 2} \Gamma\left(\frac{\beta \Omega_{l}}{4}\right) \Phi\left(\frac{\beta \Omega_{l}}{4}, 2, x^{2}\right) \tag{7}
\end{equation*}
$$

In the case of a source located in an infinite homogeneous medium the sum over ℓ must be replaced by the corresponding integral.

A detailed discussion of applications of the above results to various special cases will be published later.

In conclusion I express deep gratitude to F. L. Shapiro for valuable discussions in the process of this work.

[^0]Translated by A. Bincer
317

INFLUENCE OF FINITE NUCLEAR SIZE ON EFFECTS CONNECTED WITH PARITY NONCONSERVATION IN BETA DECAY

B. V. GESHKENBEIN

Submitted to JETP editor September 30, 1957
J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1535-1536 (December, 1957)

For β-decay, particularly for forbidden transitions, the action of the nuclear field is of importance. As in Ref. 1, we take for the electron wave function

$$
\psi_{e}=\binom{\varphi_{e}}{\chi_{e}}, \begin{align*}
& \varphi_{e}=\left[\alpha_{0}+i \operatorname{pr} \alpha_{1}+i(\sigma \mathrm{r})(\sigma \mathrm{n}) \beta_{c}\right] u_{\xi}, \tag{1}\\
& \chi_{e}=\left[\beta_{0}+i \operatorname{pr} \beta_{1}+i(\sigma \mathrm{r})(\sigma \mathrm{n}) \alpha_{c}\right](\sigma \mathrm{n}) u_{\xi},
\end{align*}
$$

where

$$
\begin{gathered}
\mathbf{n}=\frac{\mathbf{p}}{p}, \quad \alpha_{0}=\sqrt{\frac{\pi}{2 p \varepsilon}} i e^{-i \delta_{-1}} g_{-1}, \quad \beta_{0}=\sqrt{\frac{\pi}{2 p \varepsilon}} f_{1} e^{-i \delta_{1}}, \quad \alpha_{1}=\sqrt{\frac{\pi}{2 p \varepsilon}} \frac{3}{p r} e^{-i \delta_{-1}} g_{-2}, \quad \beta_{1}=\sqrt{\frac{\pi}{2 p \varepsilon} \frac{3}{i p r}} e^{-i \delta_{\delta_{2}}} f_{2}, \\
\beta_{c}=\sqrt{\frac{\pi}{2 p \varepsilon}} \frac{1}{r}\left(e^{-i \delta_{1}} g_{1}-e^{\left.-i \delta_{-1} g_{-2}\right), \quad \alpha_{c}=\sqrt{\frac{\pi}{2 p \varepsilon} \frac{1}{i r}\left(e^{-i \delta_{-1}} f_{-1}-e^{-i \delta_{1}} f_{2}\right)}}\right. \text {, }
\end{gathered}
$$

($m_{e}=c=\hbar=1$), g_{κ}, f_{κ} are the inside-the-nucleus solutions of the radial Dirac equation joined with the outside solutions at $r=r_{0} ; \delta_{\kappa}$ is the phase. ${ }^{2}$ We write the β-interaction Hamiltonian as follows

$$
\begin{equation*}
H=\sum\left\{g_{i}\left(\bar{\psi}_{2} O_{i} \psi_{1}\right)\left(\bar{\psi}_{e} O_{i} \frac{1-\gamma_{5}}{2} \psi_{v}\right)+g_{i}^{\prime}\left(\bar{\psi}_{2} O_{i} \psi_{1}\right)\left(\bar{\psi}_{e} O_{i} \frac{1+\gamma_{5}}{2} \psi_{v}\right)\right\} \tag{2}
\end{equation*}
$$

(summation over $\mathrm{i}=\mathrm{S}, \mathrm{T}, \mathrm{V}, \mathrm{A}, \mathrm{P}$). If the two-component neutrino theory ${ }^{3-5}$ holds, then emission of an antineutrino together with an electron corresponds to $\mathrm{g}_{i}^{\prime}=0$, whereas emission of a neutrino corresponds to $\mathrm{g}_{\mathrm{i}}=0$.

[^0]: ${ }^{1}$ E. R. Cohen, Geneva Conference Paper 611, 1955.
 ${ }^{2}$ Hurwitz Jr., Nelkin, and Habetler, Nuclear Sci. and Eng. 1, 280 (1956).
 ${ }^{3}$ E. R. Cohen, Nuclear Sci. and Eng. 2, 227 (1957).

