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1.24 and 1.31 Mev. Study of the excitation function led us to the conclusion that these lines should be as­
signed to nuclear reactions which proceed via compound-nucleus formation. 
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A thermodynamical theory of relaxation phenomena connected with the relaxation of an addi­
tional internal parameter of the system is developed on the basis of the method of Mandel'­
shtam and Leontovich. The relaxation times and the relation between them are established. 
Expressions are obtained for the dynamic derivatives of a system undergoing a periodic per,.. 
turbation. A relation is found between the relaxation times and discontinuities in the deriv­
atives near the Curie point. The results are extended to an arbitrary number of additional 
internal parameters. 

THE term "additional internal parameter" is applied to a quantity characterizing some internal property 
of a system which, when the system is in equilibrium, appears to be a functioilL of state. A delay on the part 
of the additional parameters in responding to external influences on the system leads, for example, to re-
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laxation absorption of sound in liquids1•2 or to internal friction in solids.3 Below we develop further the 
method proposed by Mandel' shtam and Leontovich1 for explaining acoustical absorption in liquids. 

We consider a system characterized in its equilibrium state by a temperature T, a generalized force 
A (pressure, stress), and a coordinate a conjugate to it (volume, strain), connected by an equation of 
state; and some additional internal parameter Tf = Tf ( T, a). This parameter may, for example, be the de­
gree of long- or short-range order, the spontaneous magnetization, the spontaneous electric polarization, 
the antiferromagnetic order, etc. 

When the state of the system changes in time, the parameter Tf takes non-equilibrium values Tf 
I: Tf (T, a); consequently, the system as a whole will pass through non-equilibrium states, in which it is 
described by the free energy F = F ( T, a, Tf). During this time we have F Tf ( T, a, Tf) I: 0, where the sub­
script denotes, as usual, differentiation with respect to the corresponding parameter. When the system is 
in its equilibrium state, . 

F 71 (T, a, 'tl) = 0, F7171 > Oo (1) 

According to Leontovich, 4 the entropy change of a non-equilibrium state is equal to 

T dS = dU +Ada- F71 d71, 

where U (T, a, ry) is the internal energy. Here the last term on the right determines the non-equilibrium 
part of the entropy change; we thus obtain for the rate of entropy production 

Tt..S =- F71~, 

From this we have, in the approximation of the thermodynamics of irreversible processes, 

~=-LF71 (T,a,'tl)o ( 2) . 
Since .68 > 0, L > 0. 

Expanding F Tf in a series about the equilibrium state of the system and taking note of ( 1 ), we obtain 
from ( 2 ), in the linear approximation, an equation describing the time rate of change of the parameter ry: 

-caT~ + /).71 = (~)r t..a + (~i1 t..T 0 ( 3) 

where TaT = ( LF TfT'f) -t is the relaxation time of the parameter Tf for constant a and T. 
In order to go over to other variables in ( 3 ), we set A = -Fa and the entropy S = - FT, so that to a 

linear approximation near the equilibrium state of the system 

t..A =- F aat..a- F art..T- F a11 t.."fj; ( 4) 

t..S =- Frrt..T- Far ~ol- Fr11t..71o ( 5) 

The derivatives F aa• F aT• and FTT• taken in the equilibrium state, can be expressed1 in terms of the 
derivatives of the equilibrium state and F TfT'f: 

(aA) _J (if~)2 0 Fa a = - oa T ,- (fa T F Till • ('oA) (O"fl) (a"'l ) 0 Far=- oT a+ Cia T oT a F1111 ' (o"fl )2 T F TT = - Ca + T oT a F1)rp ( 6) 

where Ca is the specific heat of the system at constant a. 
We have yet to explain the significance of the quantities entering into (6 ). If we exclude from our sys­

tem the subsystem of the degrees of freedom responsible for the appearance of the properties character­
ized by the parameter ry, i.e., if we set in ( 6) ( 8ry/8a )T := ( 8ry/8T )a:= 0, then it becomes clear that, in 
the system remaining after the exclusion of the subsystem, - F aa• - F aT• and - TFTT represent the 
derivatives ( 8A/8a >T• ( 8A/8T )~, and the specific heat c~. Consequently, in turn, the quantities 

[( oA) J _ (o"fl\2 0 [(oA) J _ (o1l) (o1) ) 0 _ .(o1l )2 F oa r - ,Cia}r F 7171 ' oT a - Cia r aT- a F1171 ' [Cal- T oT a 1111 ( 7) 

are the respective contributions of the subsystem to ( 8A/8a )T, ( 8A/8T >a• and to the specific heat Ca 
of the whole system. In particular, if a second-order phase transition connected with the existence of the 
parameter ry, is possible for our system, then at the Curie point [ ( 8A/8a )T ], [ ( 8A/8T >a], and [ Ca] 
will be equal to the discontinuities of the corresponding quantities. 

Using Eqs. ( 4) and ( 5) to transform ( 3) successively to pairs of variables other than a and T, we 
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can show that the time rate of change of Tl• for an arbitrary choice of variables, has the form 

-:xy~ + ~-'l = (a'r,jax)y ~x + (a'rlfay)x~Y· (8) 

where x and y are any two of the variables a, A,, T, and S. Here the relaxation times Txy of the 
parameter Tl• for constant x and y, are related to each other by 

(aA;aa)r (aA;aT)a (aA;aT)a _-aS Ca 
~aT _ 'tAT -- -Aa _ 'tTS ~-:-=;;---------;-:'"""---= , 
. - (aA;aa)r- [(aA;aa)rJ -" (aA;aT)a- [(aAji:IT)al - (aA;aT)a -- [(aA;aT)al - " Ca -[C0 ] 

_-AS (aAiaa)rCA 
{(aA:Cia)r-l(aA;aa)rlHC A-[C A I! · (9) 

In deriving ( 9), use has been made of the equations in ( 6 ) and the notation of ( 7 ) . 
For a periodic perturbation of the system at a frequency w, we can find the dynamic derivatives 

(oy/ox)a,w. where x, y, z are any three of the variables a, A, T, or S. Eliminating .t..TI from two 
equations of type (8 ), expressed in terms of the variables x, z and y, z, we obtain 

(i!Jt) = (~') 1 + iwrYZ • 
\ax z,w ax z 1 + iw-rxz 

( 10) 

From this it follows that 

( i!Jt) : (~~J = 'tyz : 'txz. 
,ax z. w-oo ax z 

( 11) 

For the variables P (pressure), V (volume), T, and S, the equations obtained by Davis and Lamb by 
another method6 follow from ( 11) immediately. 

From ( 8 ) it follows that 

(arJax)y,w-oo = (a-rifax)y,w=oo = 0, 

so that, for w - 00 , the subsystem of the degrees of freedom responsible for the appearance of the sys­
tem properties characterized by the parameter Tl take no part in the change of the state of the system; it 
is isolated from the remaining degrees of freedom of the whole system. Therefore the quantities 
(oy/ox>z,w=oo are just the derivatives (oy/ox)~ relative to the system which remains after the subsys­
tem has been excluded, and the quantity [( ay/ax)z] = ( ay/ox)z- ( ay/ax)z, w =co determines the con­
tribution of the subsystem to the derivative ( oy/ox)z for the total system. On this basis we obtain 
from (11) 

( 12) 

At the Curie point, [( oy/ax)z] = .t..( ay/ox)z; consequently, one can write, near enough to the Curie 
point 

,yz = I - ~ (i!Jt) I (i!Jt) . 
,xz \ax z ax z 

(13) 

At the Curie point the relaxation times increase without limit.7 

The results obtained above can be extended to a system with an arbitrary number N of additional in­
ternal parameters Tit• ... , TIN by an analogous scheme. In this case we have for the dynamic derivatives 

N . 

(ay) (ay) n 1 + lW't~z 
ax z."' = (ix z n=l 1 + iw-r~z ' (14) 

where TKz and T~z are the relaxation times of the additional parameters for constant y, z and con­
stant x, y respectively. These times relate to the additional parameters with the same index n, pro­
vided that Tit• ... , TIN are independent. In the opposite case the relaxation times appear to be general 
ones and cannot be associated with individual parameters. In particular, the approach of the Tin to their 
equilibrium values TIJ0> for constant x, y will take place according to the law 

N 

'In = "'j~o> + ~ A~{ exp (- lf-r.~Y), 
k-1 

(15) 
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where the coefficients A depend on the initial conditions. 
Equations ( 10) and ( 11) can be applied to the description of all relaxation phenomena connected with 

the corresponding dynamic derivatives. The thermodynamical theory leaves open the question of the tem­
perature dependence of the relaxation times. 

The author expresses his appreciation to S. V. Vonsovskii and to G. V. Skrotskii for discussion of the 
work. 
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It is suggested that the invariance of the {3-interaction under time reversal can be examined 
by observing {3 -y angular correlations in allowed transitions with aligned nuclei. Formulas 
are obtained for the {3- 'Y correlation in nuclei oriented by various methods. The general 
form of the {3-interaction is considered with parity nonconservation taken into account. An 
expression is given for the {3- 'Y angular and polarization correlations in oriented nuclei for 
{3-transitions of any order of forbiddenness. 

ExPERIMENT has at present verified that parity is not conserved in weak interactions, as had been hy­
pothesized in different forms by Lee and Yang1•2 and by Landau.3•4 It remains for experiment to test the 
specific versions of the hypothesis. We shall speak here primarily of a test of the conservation law for 
"combined parity," which according to Pauli's theorem5 is equivalent to the invariance under time re­
versal. 

Another important question is whether or not is is possible to describe the neutrino by a two-compo­
nent equation.4•2 

In the present work we shall give our main consideration to the first of these problems. We shall do 
this by investigating the {3 -y angular correlation of oriented nuclei. We shall show that if the nuclei are 
oriented by the method of BleaneyS or Pound7 (aligned nuclei), then a measurement of the {3- 'Y correla­
tion for allowed transitions can give important information on the nature of the {3-interaction: 

( 1) If there is no {3- 'Y angular correlation, then (a) the {3-interaction is invariant with respect to 




