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A study is made of the spin oscillations of a paramagnetic Fermi-liquid (He3) placed in a 
constant magnetic field at low temperatures, where collisions can be ignored. 

LANDAU, using a phenomenological theory, 1 has carried out an investigation of the oscillations of a 
Fermi-liquid2 by generalizing certain results obtained earlier for a gas with weak interactions3•4 (also 
see Ref. 5). In particular, he has shown that it is apparently possible for neutral sound waves to be propa
gated in actual liquid He 3 at low temperatures, but not for spin waves. 

The present paper is devoted to a study of spin oscillations in a Fermi-liquid placed in a magnetic 
field. In formulating the relevant kinetic equation, Landau1 ignored the presence of a magnetic field; con
sequently in the first section of this report we derive a kinetic equation which takes it into account.6 In 
Sec. 2 we investigate spin oscillations for the isotropic case and obtain the characteristic frequencies of 
these oscillations. These frequencies appear to be the limiting values of the spin-wave frequencies when 
the wavelength goes to infinity. Section 3 is devoted to a study of spin waves. Here it is shown, in con
trast with the results of Landau quoted above, that it is possible for spin waves to be propagated in actual 
liquid He3 in the presence of a constant magnetic field. 

1. THE KINETIC EQUATIONS 

To obtain the kinetic equations which describe the quasi-particles of a Fermi-liquid in the presence of 
a magnetic field, we start from the equation for the density matrix 

a ,. 
1i at Pmn (r', r; t) = H mn' Pn'n (r', r; t)- H n'n'Pmn' (r', r; t), (1.1) 

where p is the density matrix, whose subscripts indicate the spin properties of the quasi-particle (we 
shall actually concern ourselves later on with the case of spin !). H is the Hamiltonian operator of a 
quasi-particle. The possibility that such a Hamiltonian exists is tied in with the possibility of being able 
to speak in general of quasi-particles. Transforming to a mixed representation for the density matrix, 

nmn (p, r; t) = (2,;f3 ~ d-;e-i<pPmn (r- ;'t' , r + ;'t' , t), (1.2) 

we can rewrite equation (1.1) as follows: 

:, nmn(p,r,t)= (2~)• ~ )do;dkdYjdqexp{iJ-;(TJ-P)+k(q-r)l}, 

[ ( 1ik 1l't' ) ( 1i.k 1l't' ) J X Smn' 'fl + 2' q -y nn1i'(TJ, q, t)- Sn'n Tj- 2 '<l+y nmn' (TJ, q, t) . 
(1.3) 

Here Emn (p, r) has the same functional dependence on the c-numbers p and r as the Hamiltonian H 
has on the momentum and coordinate operators. 

The equation of the quasi-classical approximation can be obtained by expanding (1.3) in powers of li. 
However, Eq. (1.3) does not take account of effects described by the collision integral in the usual 
Boltzmann equation. In Eq. (1.1) it is assumed that there is a Hamiltonian operator for each individual 
quasi-particle, different from the Hamiltonian of a free particle in that there is a certain self-consistent 
field of the other particles. The Hamiltonian does not depend explicity on the coordinates of these other 
particles, however, and in this sense does not take into account the interaction between them. It is possible 
in principle to take such an interaction into consideration. On the other hand, it is clear that the collisions 
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which have been ignored in Eq. (1.3) are the result of such an interaction. We consequently add a collision 
integral Jmn to the terms obtained from (1.3) in the equation of the quasi-classical approximation: 

on i [ n] + __!_ (~ !!!! + !!!! ~) _ __!_ (~ !!!! + !!!! ~) = ] Ft- T E, 2 op or or op 2 or op iJp ar ' (1.4) 

where [ E, n] is the commutator of E and n, which are matrices with respect to the spin variable. 
It is convenient to get rid of the matrices and to introduce instead of n a distribution function f of the 

particles in phase space and a vector function a of the spin density in phase space, determined by the 
relations: 

.. 
Here the a are the Pauli spin matrices. 

Then, noting that E (p, r) can be written in the form 

we obtain the following equations for the functions f and a: 

!1_+~~-~~+~~- 0£2 ~=J· 
ol op or or op opj arj arj apj ' 

~~ + ( ~: ! ) a- ( ~~~ :P) a+ ! [e2 a]+ ( ~~ :P) a2 

- (!!___!__ 1 a2 = J. 
iJp ar) 

A A A 

Here the quantities J and J denote SpaJ and Spa<TJ, respectively. 

(1.5) 

(1.6) 

(1. 7) 

(1.8) 

The functions E1 and £2 depend on the space coordinates because of the fact that they are functionals 
of n(p, r). Actually, if there is no magnetic field, then according to Landau 

OEmn (p, r) = Sp.,, ~ l'rnn' (p, p') 'ilnn'm (p', r) dp'. (1.9) 

If we ignore the small spin-orbit coupling in the expression for E(p, r), then in the presence of a magnetic 
field 

1 A A ~ 
'ils (p, r) =- T ~(a H)+ Sp.,, J {9 (p, p') + (aa'H (p, ~')}on (p', r) dp', 

which, according to (1.6), permits us to write down the following expressions: 

'ils1 (p, r) = ~ 9 (p, p') of (p', r) dp', 

oa2 (p, r) =- ; ~H + Sp.,, ~ <.jl (p, p') oa (p', r) dp'. 

Furthermore, because of the fact that 

we have 

~=.R_+S ,\'fA( ')iJn(p',r)d' 
op m Pa J p, P iJp' P ' 

~ = ..£__ + \' (j) (p p') of (P', r) dp' 
ap m j ' ' op' ' 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

In Eq. (1.8) it is necessary to know not only the derivatives of the functions E1 and E2 but the entire func
tion E2• Regarding the magnetic field as negligibly small, or , to be more precise, considering that 

~ (aH) ~ s (p, r), (1.16) 

we can also consider the quantity u(p, r) to be small, and therefore drop the 6 operation in Eq. (1.12). 
At the same time we ignore quantities of second order in expansions in powers of the magnetic field(H/E). 
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2. SPIN OSCILLATIONS FOR AN ISOTROPIC DISTRffiUTION 

When there is no spatial anisotropy, then, according to the results of the preceding section, it is possi
ble to write (1.8) in the following form: 

~~ + ! ~ dp' 1\J (p, p') (a (p') a (p)] + i [crxH]= J. (2.1) 

In particular, we can obtain from (2 .1) an equation describing the time rate of change of the magnetization 
density 

M = (~ j 2) ~a dp. (2.2) 

Integrating (2.1) over dp and noting that l/J ( p, p') is a symmetric function of p and p', we obtain 

oMjat + (~/t.)[MxH]= (~/2) ~Jdp, (2.3 

which for the appropriate approximation of the collision integral agrees with the ordinary Bloch equation. 
Thus, given a certain constant magnetic field H0, we find that if we disregard collisions, which, gener
ally speaking, lead to attenuation, the principal frequency of oscillations of the magnetization turns out to 
be 

(2.4) 

However, in contrast with the corresponding results for a gas, the frequency Q 0 here will not be the only 
frequency characterizing spin oscillations. 

We consider a state, slightly out of equilibrium, in which there is a constant uniform field H0• Then 

(2.5) 

Resolving u1 into components parallel ( 0' 11 ) and perpendicular ( u-"- = axi + ayj) to H0, we obtain 
in the linear approximation the following equations for o-11 and for a(±) = ax ± ioy: 

(2.6) 

~r#>--jiQ0o<±>+i ~-~dp'{:~0 (p)o<±l(p')-o0 (p')o(±)(p)}+i ~ 0 0 (p)(HlXj_iH1y)=J<±>, (2.7) 

from which it is clear that only the component of a lying in a plane perpendicular to H0 can oscillate. 
Noting that 

(2.8) 

where f0 is the Fermi distribution function, so that a0 has the form of a o-function, we can express the 
solution of (2. 7) in the form 

:~<±>(p) = (of 0 /ih)~<±>(6,r.p, t). (2.9) 

Then, introducing the notation 
2 

'Y (cos x) = 4r. (Z~'Ii)a ~: y (Po• P~), (2.10) 

where Po and v0 are the momentum and velocity of the particles on the Fermi surface and x is the 
angle between the vectors p0 and p0, we obtain from (2. 7) the following equation for t (±): 

az;<±) (' do' ------at+ i00 ~<±> + i00 j 41t '¥(cos X) {C(±) (6', r.p') ~ ~<±> (6, r.p)} + i00 H ± = J ± • (2.11) 

The solution of (2.11) can be written as an expansion in spherical harmonics: 

"(±) (6 t) = ~ r<±) {t) eimcp pm .( 6) ( 2n + 1 (n- m)! )''· 
" 'r.p, ~ ~n. m yz;t n COS \ 2 (n + m)! . 

n. m 
(2.12) 

If we now represent the function '11 ( cos x) as a series of Legendre polynomials 

':Y(cosx) = ~rt.nPn(cosx), (2.13) 
n-o 
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we obtain from (2.11) the following equations: 

a c<±>- ·n. c<+> .,.... H V-2 J<±> for n = 0: 7ft o,o + h~0 o:O + ~>•0 ± rr = o,o , (2.14) 

a (±) - .,.... (±) ( 2cxn ) J(±)' 
for n =f= 0: 7ft C,;, ·m + t••o Cn, m 1 + OC0 - 2n + 1 = n, m· (2.15) 

Here J~,m denote the appropriate coefficients of the expansion in spherical harmonics. 
It is easy to see that (2.14) corresponds to the Bloch equation and agrees with the linearized equation 

(2.3). In the absence of an external field and with no allowance made for collisions, this equation describes 
spin oscillations with frequencies ± n0• If collisions are ignored in Eq. (2.15), then 

C± . h , { 2a., ) 
n, m ~ exp ( + lWnt), W ere Wn = l,~O \1 + OCo- 2n + 1 · (2.16) 

The frequency of all such oscillations coincides with n0 for an ideal gas. One can say that the presence 
of a self-consistent field in which the quasi-particles move about removes such a degeneracy. 

3. SPIN WAVES 

In Fermi-liquids, because of the presence of exchange interactions, the propagation of spin waves is 
possible in principle. 2•4 However, a detailed analysis of this possibility carried out by Landau for He3, 

has shown that such waves can apparently not be propagated in real helium. 2 This result was obtained 
under the assumption that there was no magnetic field. Below we shall study the problem of the propaga
tion of spin waves in a Fermi-liquid placed in a magnetic field. 

We are interested in states which depart slightly from equilibrium, and for which the magnetic field is 
constant and uniform. In the linear approximation Eqs. (1. 7} and (1.5) can be written in the following way 
(neglecting collisions): 

at, + ( a ) f B/0 \ d , ( ') a.r, (p'. r) +. aari aaoi a 1\ d , , ( ') ( , ) 1. BH ( )} O· 
(jf ,V(k l-ap~ p Cf p,p ar V;,ja,-:--a-p. ----ar.tJ p "( p,p :Jli p,r -2 1 Ii f =, 

I I I 

where 
v = ae,o =_!_+I (j) (p p') Bfo (p') dp' 

ap m ~ . ' clp' ' 

. I , aaoi (p') , 
V;,j=J'f(p,p) , dp. 

dpj 

(3.1) 

(3.3) 

(3.4) 

Noting that O'o is parallel to H0, we can represent u1 as the sum of components parallel and perpendicu
lar to the field H0, as we did in Sec. 2. Introducing the notation 

cr<±l = :Jx + i:Jy =(at 0 I az) c<t> (r; B, cp, t), 

we have the following equation for the perpendicular part: 

~ ca>+(vo:r)~ +in0 ~<±>+inoH±+i00 ~ ~~ 'P'(cosx){C<±>(r,fJ',cp')-~<±>(r,O,cp)} 

=-(v :r)g H±+ ~ ~~ 'P'(cosx)C<±>(r,B',<p')}. 

where v0 is the velocity at the Fermi surface. 

(3.5) 

It follows from Eq. (3.5) that the transverse spin waves are not connected with acoustic oscillations. 
The longitudinal spin waves are, however, related to sound waves; but, as we can easily convince our
selves, a constant magnetic field leads only to a change in the sound velocity, and thus in the velocity of 
propagation of the longitudinal spin waves, which in order of magnitude is "' H~. Therefore in what fol
lows we limit our study to transverse spin waves, corresponding to oscillations of u in a plane perpen
dicular to H0 and described by Eq. (3.5). 
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If we suppose that there is no varying external field, we can set the solution of (3.5) proportional to 
exp(-iwt + ik·r). Equation (3.5) can then be rewritten 

(3.6) 

We now investigate the solution of (3.6) under the assumption that 'II (cos x) is a constant. If such an 
assumption is made for actual liquid He3, the constant appears to be negative. For our case we obtain 
from (3.6), with 'II constant, the following relation between the frequency w and the wave vector k of 
the spin waves: 

" 1 + __!__ 'F i d6 sin 6 kvo cos 6 =F no 0 
2 l kv0 cos6=f00 (1-'Y)-6l = · (3. 7) 

0 

Carrying out the integration, we obtain the following result: 

1 + 6l =F '1'00 __!_In 6l ± 0 0 (1 -'F)- kv0 _ O 
2kvo 1 + 'Y 6) ±no (1- 'F)+ kvo- . (3.8) 

If the constant magnetic field is zero, then (3.8) takes the form2 

(3.9) 

This last expression admits of real values for the ratio w/kv0 only for positive '11. Since 'II is not 
positive for He3, there can be no spin waves propagated in the absence of a magnetic field. 

If the magnetic field is not zero, but the frequency of the spin waves is much greater than n0, (3.8) 
agrees approximately with (3.9), so one can say that spin waves cannot be propagated at such high frequen
cies as well. 

Let us investigate this question in some detail. We set 

(3.10) 

and obtain from (3.8) 

I = P + 'Y ___.!:__In P -1 + 'Y + kuo . 
2ku0 1+'1' p-1+'Y-ku0 

(3.11) 

In the region of long waves, a sol uti on of (3 .11) can be obtained from an expansion in powers of ( ku0) , 

from which we obtain 

(3.12) 

Thus for positive 'II the absolute value of the frequency increases with increasing k. The same thing 
occurs for negative 'II provided that 1 + 1/'11 > 0. However if 1 + 1/'11 < 0, as might conceivably occur 
for actual liquid He3, the absolute value of the frequency decreases with an increase in the wave vector 
of the spin waves. 

It is easy to show that for 'II < 0 there is no real value of p, corresponding to unattenuated spin 
waves, if 

P> I- 'F -ku0 (ku 0 > I). 
Let us explain under what conditions the inequality (3.13) sets the limit for p. To do this we set 

p = I - 'F'- ku0 - ~. where I ~ ~ > 0. 

From Eq. (3.11) we obtain 
(1 + 'Y 2ku0 ) 

~ = 2kuo exp \ --w- 1-kuo . 

From this it follows that a solution of the form (3.14) is possible if 

- ( 1 + ~1) 2ku0 / (I - ku0 ) ~ l. 

For the case 1 + 1/'11 < 0 this condition is satisfied when 

u;l-k~-2k(l + 'F')j'F'. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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Thus one can say that as the wave vector approaches the value u01 the absolute value of the frequency of 
the spin waves decreases and 

p = p. =- o/ for k = k1. = u~1 = 0.0 / V0 • Inn 1m (3.18) 

Thus for 1 + 1/>11 < 0 the absolute value of the frequency of the spin waves decreases with increasing 
value of the wave vector in the region of small k, in accordance with (3.12), but for values of the wave 
vector equal to fl 0/v0, :it attains a minimum value equal to l>~~flo 1. 

We note that for the case 1 + 1/>11 > 0 the condition (3.16) also leads to (3.18), but only if the wave 
vector approaches 0 0/v0 from the side of large values. 

When the function >II (cos x) does not reduce to a constant, Eq. (3.6) leads to a whole series of spin 
waves whose frequencies coincide, in the limit of infinite wave length, with the corresponding frequencies 
obtained in the preceding section. It is necessary to point out that for spin oscillations corresponding to 
isotropic distributions, it follows from Eqs. (2.14) and (2.15) that an external magnetic field can excite 
oscillations of the magnetization only at a frequency 0 0• Conversely, for spin waves corresponding to 
arbitrary functions >II (cos x), the individual spherical harmonics [see (2.12)] no longer appear to be 
solutions of the problem; indeed, the solutions of (3.5) appear to be determined by superpositions of the 
different spherical functions, among them the one corresponding to n = m = 0 [see (2.12)]. Upon integra
tion over all angles, only this spherical harmonic gives a non-zero result, and consequently it alone cor
responds to a magnetization. It is clear that an external field leads to a change of just the magnetization. 
Consequently, in the case of spin waves, an external magnetic field in any solution of (3.5) can lead to 
changes in the zero-order term of the expansion in spherical harmonics. Furthermore, in view of the fact 
that the relation between all the terms of the expansion is completely determined, the magnetic field leads 
to a change of the entire solution, or in other words to the excitation of spin waves. It is clear that as the 
wavelength of the spin waves increases, the amplitude of forced oscillation of all the waves except those 
going over into oscillations of the magnetization (2.14) must decrease. Conversely, in the region of wave
lengths of the order of v0/rz 0, the amplitudes of forced oscillation of all the possible spin waves will have 
the same order of magnitude. 

In conclusion we would like to express our appreciation to V. L. Ginsburg for his interest in this work. 
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