$$E^{(2)} = \frac{2m U^2 p_0^7}{\pi^6 \hbar^9} \int_0^1 s^2 ds \Big[\int_0^{1-s} p^2 dp \int_0^{1-s} q^2 dq + \frac{1}{4s^2} \int_{V_{1-s^*}}^{1+s} p dp (1-p^2-s^2) \int_{V_{1-s^*}}^{1-s} q dq (1-q^2-s^2) \Big] \frac{1}{p^2-q^2} \cdot \frac{1}{p^2-q^2} \cdot \frac{1}{p^2-q^2} \int_{V_{1-s^*}}^{1-s} \frac$$

Integrating further by parts over s and then carrying out the remaining integration, we obtain

$$E^{(2)} = ({}^{6}\!/_{35}) (3/\pi)^{1/_{s}} (11 - 2 \ln 2) a N^{1/_{s}} E^{(1)}.$$

Here we have expressed U in accordance with Eq. (2) and set $p_0 = \hbar (3\pi^2 N)^{1/3}$. The result thus obtained is identical with the second-order term in Eq. (21).

¹K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).

²T. D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).

³L. D. Landau, J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 1058 (1956), Soviet Phys. JETP 3, 920 (1957).

⁴I. M. Khalatnikov and A. A. Abrikosov, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 915 (1957), Soviet

Phys. JETP 5, 745 (1957).

⁵L. N. Cooper, Phys. Rev. 104, 1189 (1956).

⁶ Bardeen, Cooper, and Schrieffer, Phys. Rev. 106, 162 (1957); N. N. Bogoliubov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 58 (1958), Soviet Phys. JETP 7 (in press).

Translated by S. D. Elliott 239

SOVIET PHYSICS JETP

VOLUME 6 (33), NUMBER 5

MAY, 1958

NUCLEAR REACTIONS IN Li⁷ AND C¹² INDUCED BY N¹⁴ IONS

D. G. ALKHAZOV, Iu. P. GANGRSKII, and I. Kh. LEMBERG

Leningrad Physico-Technical Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor June 3, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1160-1162 (November, 1957)

In an investigation of the reaction products induced by the bombardment of Li⁷ by 15.6-Mev nitrogen ions, activities associated with F¹⁸, Ne¹⁹, N¹⁶, and O¹⁵ have been found; similarly, an activity associated with Al²⁵ has been found in the bombardment of carbon. The production cross sections for the above-mentioned products have been determined. On the basis of an examination of the F¹⁸-production cross sections in light elements bombarded by nitrogen ions and the α -particle binding energy in these same nuclei, it is proposed that the F¹⁸ is formed by capture of an α -particle from the nucleus by the incoming N¹⁴ nucleus.

NUCLEAR reactions induced in light elements by N^{14} ions have been studied by a number of authors.¹⁻⁶ However, in all this work only nuclides with half-lives T greater than 1 min were investigated. The products resulting from the bombardment of Li^7 by N^{14} have not been studied at all.

In the present work we have measured yields for nuclides with T > 1 sec produced by bombardment of Li⁷ and C¹² by N¹⁴ ions. The experiments were carried out with a beam of triply-charged, 15.6-Mev N¹⁴ ions from a cyclotron; the beam was focussed by two magnetic-quadrupole lenses. The target was placed at the end of a Faraday cylinder. The electric charge deposited by the beam was measured by electronic integration. In these experiments the ion-beam intensity was $4 - 7 \times 10^{10}$ ions/sec.

The lithium bombardment was carried out with a target consisting of a LiCl layer 70μ thick precipitated from an aquaeous solution enriched in Li⁷ (the Li⁷ content was approximately 99 percent). The

892

TABLE I

Reaction product	Т	B for ni- trogen ions	$\sigma imes \mathrm{cm}^{2*}$
F ¹⁸ Ne ¹⁹ N ¹⁶ O ¹⁵ A ²⁵	112 min 18.5 sec 7.4 sec 1.97 min 7.6 sec	$1.4 \cdot 10^{-7} 3.1 \cdot 10^{-8} 1.1 \cdot 10^{-7} 1.0 \cdot 10^{-8} 3.2 \cdot 10^{-9}$	$\begin{array}{c} 1.8 \cdot 10^{-26} \\ 4.0 \cdot 10^{-27} \\ 1.5 \cdot 10^{-26} \\ 1.3 \cdot 10^{-27} \\ 2.0 \cdot 10^{-28} \end{array}$
	Reaction product F ¹⁸ N ¹⁶ O ¹⁵ A l ²⁵	Reaction product T F18 Ne ¹⁹ 112 min 18.5 sec N16 O ¹⁵ 7.4 sec O ¹⁵ 1.97 min ³ A1 ²⁵ 7.6 sec	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

carbon bombardment was carried out with a graphite target 70μ thick. In both cases the target substrate was a copper slab 70μ thick. The copper end of the Faraday cylinder was 100μ thick. The radiation associated with the induced activity was detected by a MST -17 end-window β -counter which was placed directly against the end of the cylinder (in this work the solid angle ranged from $0.46 \times 4\pi$ to $0.22 \times 4\pi$). The counter pulses were fed to an amplifier and then to the input of a 10-channel time analyzer in which the pulses were recorded in various channels depending

on their relative time delay. By varying the time width of a channel it was possible to measure to 10^{-3} sec and better. In the present work only T > 1 sec has been investigated. The analyzer was synchronized with the cyclotron beam and automatically switched on a short time after the beam was switched off.

An analysis of the activity in graphite resulting from the bombardment of Li⁷ indicated the presence of nuclides with half-lives of 6.8 sec, 17.5 sec, 2 min, and 130 min. When Li⁷ is bombarded by N¹⁴ formation of the following nuclides with values of T ranging from 5 to 20 sec is possible: F^{20} (T = 7.35 sec, $E_{\beta \max} = 10.4 \text{ Mev}$); N¹⁶ (T = 10.7 sec, $E_{\beta \max} = 7 \text{ Mev}$); Ne¹⁹ (T = 18.5 sec, $E_{\beta \max} = 2.2 \text{ Mev}$). For control purposes a decay curve was taken with an aluminum absorber between the counter and the target. The thickness of the absorber (3 mm) was sufficient to stop β radiation from Ne¹⁹. In this case the 6.8-sec activity was observed. This result serves as a basis for assuming that when Li⁷ is bombarded by ni-trogen N¹⁶ is formed and the F²⁰ yield (if it exists at all) is less than 0.1 of the N¹⁶ yield. The 17.5-sec activity has been assigned to Ne¹⁹; the 2-min and 130-min activities have been assigned to O¹⁵ (T = 1.97 sec) and F¹⁸ (T = 112 sec).

The bombardment of C^{12} by N¹⁴ has been studied in Ref. 2; a 112-min activity (F¹⁸), a 15-hour activity (Na²⁴) and 2.6-year activity (Na²²) were found. In the present work the short-lived activities were studied. A 7.4-sec activity, apparently due to the $C^{12}(N^{14}, n)Al^{25}$ reaction was observed.

Extrapolating the decay curves to the origin, introducing corrections for β -ray absorption in the target, substrate, and end of the Faraday cylinder, and introducing solid-angle corrections we have determined the yields for the various nuclides formed in N¹⁴ reactions. In Table I are shown the yield values B for thick targets, referred to a single nitrogen ion. In this same table are shown the cross sections σ for the various reactions which result in the formation of the nuclides shown in the table. To compute the values of σ , starting from the values of B determined in the experiments, one must know the excitation function $\sigma(E)$ and the stopping power of the target material for nitrogen ions. We have compared the experimentally determined excitation functions²⁻⁴ for the reactions

$$Be^9 (N^{14}, He^5) F^{18},$$
 (1)

$$B^{10}(N^{14}, Li^6)F^{18},$$
 (2)

$$C^{12}$$
 (N¹⁴, Be⁸) F¹⁸, (3)

$$O^{16}(N^{14}, C^{12})F^{18}$$
 (4)

and are convinced that these functions are very much the same for energies E less than the height of the Coulomb barrier E_b ; for nitrogen-ion interactions with Be^9 and B^{10} the excitation functions are essentially identical. Hence, in computing σ for reactions occurring in the bombardment of lithium by nitrogen ions we have used the $\sigma(E)$ curve for the reactions in (1) and (2) published in Refs. 3 and 4; in the carbon case the $\sigma(E)$ curve for reaction (3) given in Ref. 2 has been used. The stopping power for nitrogen ions was computed by converting the range-energy curves for α -particles using the method proposed by Lonchamp.⁷ We have obtained the following results: nitrogen ions with $E \leq 15.6$ MeV in LiCl, $dE/d\rho x = 6.1$ MeV-mg⁻¹-cm²; in graphite $dE/d\rho x = 7.6$ MeV-mg⁻¹-cm².

The high value of the F^{18} -production cross section in Table I is noteworthy. An anomalously high F^{18} yield is also noted in bombardment of certain other elements by nitrogen ions. It is possible that F^{18} formation takes place as the result of the capture of an α particle from the target nucleus by the incoming N¹⁴ nucleus as in "inverse stripping" reactions in which the incoming nucleon can cause the ejection of another nucleon from the nucleus and continue on in the form of a deuteron. It is apparent that with a re-

TABLE II

Target nucleus	E _{bind} , Mev	E _B , Mev	σ , cm ²	Reference
Li ⁷ Be ⁹ B ¹⁰ C ¹² N ¹⁴ O ¹⁶ Al ²⁷	2,5 2.2 4.4 7.4 11.6 7.2 10.0	5.0 6,4 7.9 9.2 10.5 11.7 17.4	$1.8 \cdot 10^{-26}$ $1.0 \cdot 10^{-25}$ $6.5 \cdot 10^{-27}$ $1.0 \cdot 10^{-27}$ $*$ $1.5 \cdot 10^{-27}$ $**$	Present work [³] [⁴] [²] [⁴]

Activity due to F^{48} production is not observed.⁵ Activity due to F^{48} production is observed but the value of σ is not given σ^{6} not given.

action mechanism of this kind a larger value of the F¹⁸-production cross section will be observed when the nitrogen ions bombard nuclei with smaller α particle binding energies (E_{bind}). In Table II we compare nitrogen-ion induced F¹⁸-production cross sections and values of α particle binding energy in light nuclei. In order to compare the results, the values of σ are taken for collision energies equal to the height of the Coulomb barrier.

It was obvious from Table II that σ decreases as Ebind increases.

¹L. D. Wyly and A. Zucker, Phys. Rev. 89, 524 (1953).

- ²H. L. Reynolds and A. Zucker, Phys. Rev. 96, 1615 (1954).
- ³H. L. Reynolds and A. Zucker, Phys. Rev. 100, 226 (1955).
- ⁴Reynolds, Scott, and Zucker, Phys. Rev. 102, 237 (1956).
- ⁵H. L. Reynolds and A. Zucker, Phys. Rev. 101, 166 (1956).
- ⁶Webb, Reynolds, and Zucker, Phys. Rev. 102, 749 (1956).
- ⁷J. P. Lonchamp, J. phys. et radium 14, 89 (1953).

Translated by H. Lashinsky 240

SOVIET PHYSICS JETP

VOLUME 6 (33), NUMBER 5

MAY, 1958

A STUDY OF SLOW µ MESONS IN THE STRATOSPHERE BY THE METHOD OF DE-LAYED COINCIDENCES

V. F. TULINOV

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor June 3, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1163-1165 (November, 1957)

A study has been made of the altitude dependence of μ mesons of ~ 100 Mev up to altitudes of about 25 km at 51° and 31° N latitude. The μ -meson production spectrum in the atmosphere has been measured at these latitudes.

 ${
m E}_{
m XPERIMENTS}$ on the altitude dependence of slow μ mesons by the method of delayed coincidences were carried out by Sands¹ and Conversi² in airplanes at altitudes up to $\sim 10-11$ km. In the present experiment the altitude dependence of slow μ mesons has been studied using that method in balloon flights up to the altitude of ~ 25 km at 51° and 31° N geomagnetic latitude.

The counter arrangement used is shown in Fig. 1. The counter trays T_1 and T_2 , separated by a Pb absorber 5 cm thick, formed a telescope. The two groups of counters marked "del" detected delayed particles. The counters of the groups A and B were connected in parallel and the anti-coincidences (A-B) were recorded. The mesons stopped in the graphite block C 7 cm in thickness.

The array detected μ mesons with kinetic energies of 100 – 115 Mev. The "del" counters were oper-