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Thus, for given values of energy and angle, the results of double and triple scattering experiments can 
yield 11 independent relations among the parameters of the transition matrix in the case of elastic scat
tering of neutrons against deuterons. One additional relation can be obtained from experiments on the 
scattering of protons against deuterons, since due to charge invariance, all the above results also apply 
to this case (if one only includes the electromagnetic interaction). 

As shown in the work of Smo:rodinskii and others, 5 the transition matrix is determined by as many real 
functions as there are variables in its most general formulation. Thus, if one carries out triple scattering 
experiments and obtains the above mentioned experimental data, it should be possible to carry out a phase 
shift analysis. 

1R. H. Dalitz, Proc. Phys. Soc. A65, 175 (1952); L. Wolfenstein, Phys. Rev. 75, 1664 (1949); 96, 1654 
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2 Condon and Shortley, The Theory of Atomic Spectra, The University Press, Cambridge, 1935. 
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The interaction of two fixed nucleons in pseudoscalar meson theory with pseudovector coupling 
is considered. The principal part of the functional of the two-nucleon state is represented in 
the form of a product of single-nucleon functionals. Consideration is given only to the states 
without real mesons and with one real meson. A procedure is developed for reducing two-nu
cleon renormalized matrix elements to single nucleon elements, which are then calculated by 
the method of Chew, Low, 1md Wick. The potential of order e-2R is calculated. It consists 
of two parts: one part is proportional to r4 (f is the interaction constant), and the other is a 
function of the phases of 1r meson scattering on nucleons. 

RECENTLY, Chew and Low1 and Wick2 considered the one-nucleon problem from a new point of view. 
Characteristic of their approach is the attempt to solve the problem without perturbation theory, and thus 
to deal only with renormalized quantities. 

In considering the two-nucleon problem in the region of nonrelativistic energies, it may be assumed 
that the meson clouds of the interacting nucleons conserve their individuality. 

Therefore, we may feel confident that in this energy region, quantities referring to two interacting 
nucleons will be expressed by single-nucleon quantities, so that the method of Chew, Low, and Wick may 
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also be used in the two-nucleon problem. In the present work, we will approach the theory of nucleon 
interaction from this point of view.* 

1. STATEMENT OF THE PROBLEM 

We consider a field of 1r mesons, which interacts with two nucleons, fixed at the points r 1 and r 2• 

The energy operator for such a system is 

H=H0 -t-U1 +V2 , 

where Ho is the energy operator of the meson field 

Ho = L}q0ataq, 
q 

and U A is the interaction operator of nucleon A with the meson field in symmetrical theory 

U ""{Vo iqrA yo + -iqrA}. 
A = L.J Aqaqe + Aqaq e , 

q 
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(1) 

(2) 

(3) 

(4) 

Here, Qo = (1 + q2) 1/ 2, the spin operator rr A and the isotopic spin operator T A refer to nucleon A; aq 
and a~ are the annihilation and creation operators of a meson in the state q; for simplicity, one symbol 
q is used to denote all the quantum numbers of the meson- the momentum and the third projection of 
the isotopic spin. We use a system of units in which h = c =,.,. = 1 (j.L is the meson mass), f0 is the non
renormalized coupling constant (in a rationalized system), and v(q) is the source function. 

The eigenfunctions w-n of the Hamiltonian H refer to states with two nucleons and different numbers 
of real mesons: without mesons (n = 0), with one meson (n = 1), etc. We are interested in w0 - the 
state with two nucleons, fixed at a distance R = I r 2 - r 1 I, and surrounded by a cloud of virtual 
mesons. In the .:_epresentation in which the creation operator a~ is a multiplicative operator on an aux
iliary function aq, the Schroedinger equation for w0 is written in the form 

Ht}J'~(1, 2, a)= {2£0 + Ecr(R)} \}!'~(1, 2, a). (5) 

The energy eigenvalue consists of two parts -the self-energy of both nucleons 2E 0 and the static in
teraction energy of the nucleons Err(R); R = r 1 -r2• The index rr = (S', I', S3, I3) characterizes the eigen
values of the total spin, total isotopic spin, and their third projections. The state vector w0 ( 1, 2, a) is a 
function of the parameters r 1, r 2 and the spin-charge variables of nucleons 1 and 2. Moreover, 
w~(1, 2, a) is a function of the variables of the virtual mesons, and w~ is a umctional of aq. It is some
times convenient to use the representation 

(6) 

where A0 is the vacuum state of the meson field. 
Our problem is the calculation of w~ and Err(R). We will attempt to reduce the two-nucleon problem 

to a one-nucleon problem. For this purpose it is necessary to study products of one-nucleon state vec
tors Fa ( 1, a) and F ~ (2, a) (a is the spin -charge index, taking four values). The quantity F ( 1, a) is a 
solution of the Schrodinger equation 

(7) 

Similar to w0 (1, 2, a), the one-nucleon state F (1, a) is also a function of the variables of the meson 
field. We will use the formula 

F (1, ii) = F (I, a+) A0 • (8) 

Different spin-charge states are orthogonal 

(Frr. (I, ii), F~ (I, a))= arr.~· (9) 

*A brief communication of part of the results was published in J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 
1262 ( 1957) [Soviet Phys. JETP 5, 1030 ( 1957) ]. 
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The dependence ofF (1, a) on the coordinate r 1 has the form 

F (I, a) = e-iur,po (I, ii) = F (I, a"e-iqr,), (10) 

where u is the momentum operator of the meson field, and F 0 (1, a) is independent of r 1• 

We will consider the asymptotic behavior of if0 (1, 2, a) at great distances R, at which the nucleons 
do not interact. In this case the meson cloud in each nucleon will have the same character as in the ab
sence of the other nucleon. Therefore, as R- oo, the functional of the two-nucleon state if0 (1, 2, a) 
must be a linear combination of products of the one-nucleon functionals F ( 1, a) F (2, a): as R- oo 

'1":: (I, 2, a)~ <I>" (I, 2, a) = ~ c~~F a (I, a) F ~ (2, a), 

i.e., the functional cl>a ( 1, 2, a) must be a solution of the Schroainger equation 

(H- 2£0) <I>" (I, 2, a)= 0, R. ___.,. ao. 

(11) 

(12) 

This was shown by Ekstein3 in a nonstationary treatment. For the stationary treatment adopted by us, 
the asymptotic behavior of if0 and the state vector with one real meson ifq are considered in the 
Appendix. 

The description of noninteracting nucleons by the use of the state vector (11) differs from the usual 
description in that the meson clouds of both nucleons are taken into account from the very beginning. 
The products ci> a{3 ( 1, 2, a) = F O! ( 1, a) F {3 (2, a) are orthogonal only as R - oo 

(13) 

For finite R, a term dependinl~ on R and not containing 6aa'Of3[3' is added to the right hand side of 
Eq. ( 13). The nonorthogonality of ci> a{3 ( 1, 2, a) is a result of the fact that the kinematic interaction, which 
is associated with the identity and statistics of the mesons and is similar to the interaction by means of 
Pauli's principle for a Fermi field, is already taken into account in cl>a{3· The region of nonorthogonality 
may be identified with the region in which the meson clouds overlap, and one and the same meson may 
belong to both clouds. 

We will seek a solution of the Schrodinger equation (5) for finite R in the form: 

'I"~ (I, 2, a)= <I>" (1, 2, a)+ Xa (1, 2, a), (14) 

where cl>a (1, 2, a),\defined byEq .. (11), coincides with if~ (1, 2, a) as R- oo, Only the states ift and if~ 
(with one real meson) are considered in the expansion of xa in eigenfunctions of the operator H. We are 
interested only in distances at which potentials of the order e-R and e-2R are of fundamental impor
tance. As we will see below, in Sec. 3, the first term of cl>a in Eq. (14) already yields the potential 
e -R and the major part of the potential e -2R. We therefore consider xa to be a small quantity. The terms 
neglected here yield terms in the potential of the order e - 3R and higher. We then obtain 

1¥0 ( 1 2 a'! = - 1 - {<t>" - ~ (<I>~'- <t>") <t>~'-- )' ~ (<t>q~'- H<t>") <t>q~'-1 · 
a ' ' ' (""" Ill") L.J ' ...:...J q ' J ' 

..., ' P.+a p.q 0 
(15) 

Ea (R.) = (fli"11D") {(<I>", H<l>") - ~ (<I>~'-, <I>") (<I>", H<t>~'-) 
' !J.+a 

(16) 

Here and in the future, we will assume Eo = 0, since the self-energy enters everywhere only as a dif
ference. We replaced if~ by cl>a in the denominators of Eqs. (15) and (16), which corresponds to taking 
account of terms of the order e-H. Let us note that the smallness of Xa is not associated with the 
smallness of the coupling constant. cl>q#-1 is defined by Eq. (A.6). 

2. INTRODUCTION OF SEPARATE COORDINATES FOR MESON CLOUDS 

The matrix elements in Eqs. (15) and (16) have the form 

(a? 1 L I a'W) = (F~(I, a) F~ (2, a), L (a, a+)F~, (I, a) Fw (2, a)), (17) 
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where L contains the normal product of the creation and annihilation operators, and is a function of the 
operators (J"A and T A' Such expressions may be calculated if the one-nucleon functionals F(1, a) and 
F(2, a) (which may be found, for example, by the use of the intermediate coupling method) are known. 
However, the use of an explicit form of the one-nucleon functionals is undesirable because it would lead 
to the consideration of virtual mesons belonging to the clouds, and the effect of the self-energy would be 
mixed with the effects of the interaction. Therefore, we will attempt to calculate matrix elements of the 
type (17) by expressing them through matrix elements between states of the physical nucleon. This will 
allow us to use only the general properties of the functionals F(1, a) and F(2, a), and not their concrete 
form. With this approach, all the matrix elements encountered will be renormalized. 

In the coordinate representation, the roles of annihilation and creation operators are fulfilled by 
cp(+) (r) and cp( -) (r) -the annihilating and creating parts of the meson operator <P (r). If cp( -) (r) is a 
multiplicative operator, then the operator cp(+) (r) has the form: 

tp<+l (r) = ~ 6.<+> (r- r') d3r' 3 , 6.<+> (r- r') = [<p<+> (r), tp<-> (r')J. 
j 8q/ > (r') (18) 

Let BA be the region occupied by the meson cloud of nucleon A. Then F (A, a+) depends only on 

those variables of cp< -) ( r) for which r lies in the region B A: F (A, a+) = F (A, <Pii""1). 
We will introduce separate variables for the meson clouds of nucleons 1 and 2. We will denote the 

field variables in the functional F(1, <Pb)) by cp~-) (r), and the field variables in the functional 
F ( 2, cpk~)) by cp~-) (r). We will introdude the annihilation operators cp1(+) (r) and cp2( +) (r) andwith the 

commutators 

[<p~+> (r), rp~-l (r')]= [<p~+l (r), <p~-l (r')] = 6.<+> (r- r'), ['f'i+> (r), <p~-> (r')l= 0. (19) 

The operator cp<;> (r) has the meaning of an annihilation operator of a meson of the cloud of nucleon 
A. With regard to the product F(1, cpi(-)) F(2, cp2(-)), the operator cp(+) (r) will be equivalent to the 
operator 

tp<+> (r) = 'f'i+> (r) + 'f'~+> (r) = ~ 6.<+> (r- r') d3r' {acpi--~ (r') + 8cp~-·~ (r')}. (20) 

For L = 1, the matrix element ( 17) is n_ow written in the form: 

(A0 , F* ( 1, q:>< + >) F* (2, q:><+>) F (I, 'f'i->) F (2, <p~->) A0). (21) 

[No assumptions are made in going from Eq. (17) to Eq. (21)). It is clear from Eqs. (20) and (21) that the 
introduction of separate variables for the meson clouds will be convenient in the case in which F*(A, cp(+)) 
= F* (A, rpi(+) + cpJ+)) may be expressed by F,* (A, 'eA+)). _ 

We will assume that the commutator [cp(--1-!} (r2), F (1, cpi(-))) is considerably smaller than the commutator 
[rp(+) (r2), F (2, rp~ -)) ). This corresponds tb the assumption that in the common meson cloud of two inter
acfing nucleons, the meson clouds of the individual mesons may be distinguished. Then in the calculation 
of (21), we may consider the operator cp(+) in F* (1, rp/+)) to be small compared with cpi(+), and the 
operator <Pi(+) in F*(2, rpi(+) + cp2(+)) to be small compared with cp?>. For small cp~+) 

F*(I rn<+>+m<+>)=F*(l ~~<+>)+\BF*(i,cpi+)) d3r6.<+>(r-r')d3r' < 8 + ... 
'TI T2 ' '1 ~ Bcpi+> (r) 8cp2-) (r') 

(22) 

and similarly for F*(2, rp (+) + cp(+)). Making the transition to the creation and annihilation operators 
a:A_q and aAq of a mesm1 in the 2 A th cloud in momentum space, we obtain 

(oc~ I oc'W) =(Fa (I, ii1) F~ (2, ii2), (I+ fl) Fa' (I, ii1) Fw (2, ii2)), (23) 

(24) 
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In the general case, in the calculation of (17), we must first apply all the operators aq and aq to the 
functionals F (1, a), F (2, a), and then use expansions of the type (22). 

The first term in (22) is the functional of nucleon 1, not interacting with nucleon 2. The second term 
in (22), which decreases with the distance R as e-R, is associated with the exchange of mesons between 
clouds 1 and 2. The following term in expansion (22) decreases as e-2R. Retaining only the first term 
in expansions of the type (22), we obtain a potential of the order of e-R. If we also include the second 
term, we find a potential of the order of e -2R. 

As a result, we arrive at matrix elements of products of the operators aAq and alq between states 
of the noninteracting physical nucleons F (1, at) F (2, a 2). These matrix elements in turn reduce to products 
of one-nucleon matrix elements. 

From the products q, a{3 (~ 2~_at, ii2) = Fa (1, at) F (2, a 2 ) we may already construct in the usual way 
the eigenfunctions q,a (1, 2; at, a2 ), a = (S', I', 83, 13). The spin and isotopic spin operators of two non
interacting nucleons are defined as S = St (at) + S2 (~ ); I =It (at) + 12 (a2 ), where SA and lA refer to an 
isolated nucleon with a meson cloud. 

3. CALCULATION OF THE TWO-NUCLEON POTENTIAL 

In the future we will write I a{3 > instead of the state Fa (1, at) F {3 (2, a2) and I a > instead of the one
nucleon state Fa ( 1, a 1). In the calculations we will frequently use the following formulas from the works 
of Chew and Low1 and of Wick2: 

aiq I oc) = - H +1 - V~qe-iqr,l oc)' 
1 qo 

(oc I v~ I oc') = (u<XVqu~~), 

(25) 

(26) 

where Ht = H0 (at) + U1 (at); ua is the spin-charge function of the bare nucleon, and Vq contains the 
renormalized charge f. 

We find from Eqs. (23) and (24) and the normalization condition (9), 

(oc~ 1 oc'Wl = <oc~ II + N 1 oc'W> = a'"'"'a~~~ + ~ {<oc I a~ 1 oc'> <~I a2q 1 W> + <oc 1 a1q 1 oc'> <~I air; 1 W>} 
q 

= a'"~,a~~, + (u'" (1) u~ (2), Nu'"' (1) u~, (2)), 

where N depends only on the spin and charge operators: 

N = (2:)3 ~ d;; eiqR (a1q) (a2q) (-r1-r2) v2 (q). 

It follows from the form of the operator N that the functionals q,a (1, 2, a) are orthogonal: 

(<I>" (1, 2, a), <t>"' (1, 2, a))= a""' (1 + Na), a= (S', /', S'3 , / 3 '), 

where Na is the mean value of N in the state a. 

(27) 

(28) 

(29) 

The potential W (R) between the nucleons is defined as an operator whose mean value in the state a 
(in a phenomenological treatment) is equal to the interaction energy Ea, calcttlated by Eq. ( 16). It fol
lows from Eq. (29) that the second term in Eq. (16) is zero. We will consider the principal term in the 
interaction energy (26), which is equal to 

(<D", HCD")/(1 -f-Na). (30) 

The numerator in Eq. (30) is a linear combination of matrix elements (af31 HI a'{3'), which by the use 
of Eqs (A.3) and (22) may be reduced to the form 

(31) 

Here, ut (~) is the ~ihilating part of the operator u1 with annihilation operators a2q. If we neglect 
the weighting operator N in Eq. (31), i.e., we neglect the distortion of the meson clouds, then by using 
(25) and (26) we obtain the usual pseudovector interaction in the lowest approximation of perturbation 
theory (with renormalized charge f): 



NUCLEAR FORCES AND THE SCATTERING OF 1r MESONS 697 

(32) 

where W 0 is a pseudovector potential 

W0 (R) =- J;)" ~ d;~ eiqR (ciq) (c2q) (-rt-::2) V 2 (q). (33) 

The second part (a.BI HI a',B'), which depends on the operator N, leads to an interaction energy of the 
order e-2R, This part contains products of matrix elements of the first nucleon 

( 0( I a;:';y~q~ I 0( 1 >, <a! at4Gtq 1 I 0(1
), <<X I ai;aw I 0(

1
) 

times analogous matrix elements of the second nucleon. Each of these matrix elements may be calculated 
by the methods of Chew and Lowt and of Wick.2 For example 

(34) 

where I nt > is a complete set of eigenfunctionals of the one-nucleon energy operator Ht, In the product 
of the sum (34) times the analogous sum for nucleon 2 (with summation index n2), we must leave only the 
terms n1 = n2 = 0 (no mesons; functional IIJ >and I v> ), and also n1 = 1, n2 = 0 and nt = 0, n2 = 1 (one 
meson; functionals I qiJ > and I qv> ), because we are considering only states without mesons and with one 
real meson. 

We will first single out the term nt = n2 = 0 from< a,BI N [Ut (a2) + ut (at)] I a',B' >. After some trans
formations, it has the form: 

In the calculation of ( ci>CT, Hci>CT), the first term in (35) gives NCTWOCT• where WoCT is the mean value of 
the potential (33) in the state CT. The second term in (35) contributes WtCT/(1 +NO') ~ WtCT to the energy 
(30), if the interaction of order e-3R is neglected. Thus, the without-mesons part of the matrix element 
(a,BI HI a',B') leads to the potential W0 + Wt, where 

2 I 2 2 I 

W (R) =- 1_ \ d3 da I i (q+qi)R ( qo + %) v (q)v (q) {2 (-rl-r2) (qql)2 + 3 (cl [qql]) (a. [qq~l)}. 
1 (27t)6 ~ q q e q~q~3 (q0 + q~) 

Let us consider the one-meson part of (a,BI HI a',B'). The expression 

"\;1 i<k+kl) R <a I v~k I tJ-q> <tJ-q i v~k~ 1 a> ( (2) [V V (k + kl + 2k kl) - L.J e 1 • ·I u~ , 21< 2k1 oqo oqo o o 
kk1qf'. koko (qo + ko) (qo + ko) (ko + ko) 

+ 2V2k1 V2k (koq0 + k~ q0 + k~ + k~2 + k0k~)l u~ (2)). 

corresponds to the case nt = 1, n2 = 0. 

(36) 

(37) 

The quantity < IJql Vtkl a> may be expressed through the phases t5ij of the scattering of a meson on a 
nucleon.2 Since according to experiment the phase 633 is dominant over a broad energy region, we will 
neglect all phases except 633 • Then, 

< Vo I ) 27t v (k) iB,.(q) • , ( ) ( P ( k) ) p.q I k 0( ·~ - ,1 3 -( -) e Slll o33 q u~'-, 33 q Ua , 
(koqo) 'q v q 

(38) 

where P 33 is the projection operator onto state 33: P 33 (qk) = (~q-t/3 TqTk) (3(qk) -(CTq) (crk)). After 

substituting (38) into (37) we see the cases nt = 0, n2 = 1 and nt = 1, n2 = 0 give the same results. If we 
neglect terms in e-3R in the interaction energy, the one-meson part of(a,BI HI a',B') leads to the potential 

WI=--- d3kd3k 1dq v v n °3" e - [3 + (-r 't )] [2 (kk1)2 (4q k + 3k k + 2k 2) 4,2 ~ 2 (k) 2 (kl) Si 2 ~ (q) i(k+ki)R { 1 I I 

2 (21t)6 (qo + ko) (qo + k~) (ko + k~) v2 (q) q2qok~k~2 3 1 2 o o o o o 

+ ( cl [kk'l) ( Cz [kk']) k0 (k~- 2k0)] - [(-r1-r2)- 1] [2 (kk')2-( c1 [kk'l) ( c2 [kk'l) (2k0q0 +2k~ + k0k~)] }. (39) 
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Thus, the principal term (30) in the energy Ea is connected with the potential W0 + W1 + w;. 
We will now consider the last term in the energy Ea [Eq. (16) ]. In order to calculate it, we must 

find the matrix element 

(40) 

where .pq is given by Eq. (A.6). The calculation of (40) is made easier by the fact that we are only in
terested in potentials of the order e-2R. Therefore, we need retain in (40) only those terms decreasing 
no more rapidly than e-R. We have 

(H- q0 - isfl V1qF (I,a) F (2,a) = F (2,a) (H,1 + U1 - q0 - isfl V1qF (l,a) + ... , 

where the unwritten terms lead to potentials of higher order. For the same reason, the first term is 
sufficient in an expansion of the type (22). As a result of the calculations, 

(41) 

(42) 

where F~ (1, a1) is the one-nucleon functional of a state with one meson. Using Eqs. (25), (26), (38), and 
( 42), we find that the last term in (16) is 

1 \ q 0 12 ' - ~(j; (<Df'v, H<D) = Wz,, 
qfLV 

where w;O" is the mean value of the potential w:;: 

W ' 4 f2 ~ · (k+k') R (2k 0 + Qo) (2k~ + q0 ) v2 (k) v2 (k') sin2 833 (q) 
2 = -- -· -- d3kd3k' dqe' 

3 (2n)6 k~k~2q~qV (q) (q0 + k0) (q0 + k~) 
X [3 + (-r1,;2)] {2 (kk')2 + (o1 [kk'l) (,a2 [kk'J)- 7/ 9 (o1k') (o2k) (kk') 

+ 4/9 k2 (o1k') (o2k') + 1/9 k2k'2 - 1/9 (kk')2 ( 1 + ( o1oz)) }. 

The total potential W is the sum of expressions (33), (36), (39), and (44): 

w = w o + w 1 + w~ + w~. 

(43) 

(44) 

(45) 

The following assumptions were made in the derivation of Eq. (45): (a) states with two or more (real) 
mesons were neglected, (b) it was implied that the various terms in the potential could be characterized 
by the way in which they. decrease with distance (the potential of 2n-th order decreases as e-nR), the 
computed potential W contains all terms of the second and fourth orders, (c) the phase c5 33 is considered 
to be dominant and the remaining phases are neglected. It is not difficult, however, to take account of the 
remaining phases. Moreover, the two-nucleon potential was defined by us as a potential between nucleons 
with meson clouds, which led to the appearance of the denominator 1 + Na in the expression for the en
ergy [Eqs. (16) and 30]. 

The basic difference between potential ( 45) and other known potentials4-G is contained in the terms W:! 
and w;, which depend on the phase of the scattering of 1r mesons on nucleons. These terms have not 
been previously obtained. w; differs from zero in the triplet charge state. The magnitude of W2 is con
siderably greater in the triplet charge state than in the singlet state. It may therefore be expected that 
the terms W2 and W2 will be imprtant in the triplet states. 

The potential of Taketani et al.4 represents the without-meson part of t;he term (30), i.e., Woa 
+ W1a/(1 + Na). In the transition to Eq. (36), we discarded the term Na in the denominator. The de
nominator in the potential of Taketani et al.4 contains in addition the renormalized term 3Ll2, which should 
not be there according to the point of view of the present work. 

The potential of fourth order v4 of Brueckner and Watson5 and of Gartenhaus6 corresponds rather to 
the potential between nucleons without clouds. This potential may be obtained from the without-meson 
part of (30) by discarding Na in the denominator. In our notation V4 = W1 + NWo. 

In conclusion, I thank Academician V. A. Fock for valuable discussions. 
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APPENDIX 

THE FUNCTIONALS w0 AND wq AS R - oo 

699 

The operator aq is an operator of differentiation with respect to aq· Since F(1, a) commutes with 
a F (2, a)/8aq, we have 

H 0F (I, a) F (2,a) = F (!,a) H 0 F (2, a)+ F (2, a) H 0 F (I, a); 

+-- -+- -+U1 F (I, a) F (2, a)= F (2, a) U 1 F (I, a)+ F (I, a) U1 F (2, a), 

where ut is the annihilating part of the operator U1 • Hence, in view of Eq. (7), 
-- -+- -+-(H- 2£0) F (I, a) F (2, a)= F (!,a) U 1 F (2,a) + F (2, a) U 2 F (I, a). 

The dependence of the right hand side of (A.3) on R may be evaluated. Using Eq. (25), we have 

+ - "' o e-iqR o+ -
U2 F(l,a) =- LJV2q H +V + E V1qF(I,a). 

q o 1 qo- o 

On the right hand side of Eq. (A.4), we have the integral 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

which decreases exponentially as R- 00 • Hence, Eq. (12) follows. For large R, the one-meson state 
wq is 

(A.6) 

which can be verified also by using Eq. (A.3). 
Note added in proof (September 16, 1957). After this work had been sent to the publisher, the author 

obtained Phys. Rev. 104, No. 6, 1956, with articles by Miyazawa and by Klein and McCormick, in which the 
two-nucleon problem is also considered. The approach to the problem and the method of our article is 
completely different from that developed in the articles of Miyazawa and of Klein and McCormick. 
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