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The hyperons A ( r = 1) and E ( r = 2 ) belong to this group. The nucleons ( r = 0) and the ~-particle 
(r = 1) belong to the second group, for which t = (r + 1)/2 and mass equals 1837 + 497.5r. Instability 
occurs soon in this group for r = 2 or 3, leading· to fast ?r-meson decay; 

The production thresholds in Bev (in the laboratory frame) for hyperons of the frist group with vari
ous S and for A (belonging to the second group) are given in the table. The hyperon of the first group 
with S = -3 and isotopic spin 1, denoted in the table by B, should exist in three charge states: B0, B-, 
and the doubly charged B--. 

If the expressions for the masses given above are at least approximately correct, then the hyperons of 
the first group, including B, cannot disintegrate by emission of K-mesons and, therefore, are meta
stable cascade particles. Production of such particles is not very probable and would require great en
ergies, but their detection does not present special difficulties. 

A simple additivity of the K-meson-nucleon interactions requires that the K-mesons in hyperons are 
in the s-state in the nucleon field. 

The above considerations, therefore, are correct only if the geometrical spin of all hyperons equals 
% and if they all have even parity in a system in which nucleons and K-mesons are even. It should be 
noted that such parity excludes the treatment of K-particles according to Fermi-Young theory as 
(A+ N ),4,5 

In the language of field theory, the proposed scheme corresponds to an interaction term in the Hamil
tonian, containing the square of the absolute value of the nucleonic wave function and the square of the ab
solute value of the K-meson wave function. It differs in this from the scheme proposed by Wentzel6 which 
introduces the interaction as linear in the K-meson wave function and, therefore, has to consider the hy
peron A, together with the nucleons and the K-meson as an elementary particle. 

*This agreement is equivalent to validity of Eq .. ( 1 ), since 

from which Eq. ( 1) follows elementarily. 
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IN Ref. 1 we considered magnetohydrodynamical equilibrium configurations. It was noted that the distri
bution of the field H and the current density j in those configurations is identical with the distribution of 
the velocity v and vorticity n, corresponding to the stationary flow of an incompressible fluid. 

Chandrasekhar2 paid attention to the existence and showed the stability of the simplest solution of the 
magnetohydrodynamical equations of an incompressible, perfectly conducting fluid, for the case where the 
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velocity of flow is connected to the magnetic field by the relation 

v = H I V 4o.p; p + pv2 I 2 = const. 

This solution is a generalization of the solution presenting a magnetohydrodynamical ring.3 It is satisfied 
by an solenoidal vector v. 

It is natural to generalize all these solutions even further. The magnetohydrodynamical equations of 
an ideal incompressible fluid of infinite conductivity can be written in the form 

iJvliJt =- '\7 (PIP+ V2/2) +[jxll]/c -[UxvL iJHjiJt =curl [ vxll], curl H = ( 4o.jc) j, curl v = n. 

Let us assume that 

v = cx.Hj"j/ 4,;p, 

where a is an arbitrary constant. From the last two equations ( 1) it follows that 

n = (cx.Jc) V 4Tijpj. 

(1) 

(2) 

( 3) 

From the second equation of ( 1) we get 8H/8t = 0 and hence by virtue of Eq. (2) 8v/8t = 0. The first 
equation of ( 1 ) takes the form 

(4) 

whence we obtain the equilibrium condition for magnethydrodynamical configurations curl [j x H] = 0, or 
the condition for a stationary flow of an incompressible fluid, curl [v x n] = 0. Thus any equilibrium 
configuration or any stationary flow of an incompressible fluid corresponds to the stationary flow of an 
incompressible, perfectly conducting fluid in a magnetic field H, in the direction of the current of the 
fluid, v. 

For instance, there corresponds to a ring current in a magnetic field and a circular vortex an analo
gous configuration (which can be called a magneto-vortex ring) with an identical distribution of the mag
netic field and the fluid velocity. Let R and a be the large and the small radius of this torus, and let 
R » a. If the current density jcp and, correspondingly, the vorticity Qcp are constant along a cross 
section, then according to Ref. 1 the radii of the torus and the current through it J = jcp/1ra2 are con
nected with the external field Hz = H0, perpendiuclar to the plane of the ring, through the relation 

Ho = - (J I cR) [In (8R I a)-- 1/ 4]. (5) 

If we use E qs. ( 2) and ( 3) to express the field and the current in formula ( 5) in terms of the velocity 
and vorticity, we find the velocity of the fluid current relative to the ring v0, or in the frame of refer
ence in which the fluid at infinity is at rest, the velocity of the torus Vk = -v0, 

( 6) 

where K = 1ra2n is the vorticity intensity. The absolute value of the velocity of the magneto-vortex ring 
for a given external field H0 can be arbitrary. In the case a = 0 the magneto-vortex ring becomes a 
magnetohydrodynamical equilibrium configuration at rest, while for a = oo it turns into the normal vor
tex ring. 

The distribtuion of the pressure in the ring in the case when R » a is not essentially different from 
the distribution in a cylindrical magneto-vortex filament of radius a. This last distribution is easily 
found from Eq. ( 4) and has the form 

If! ( "2) ,2 P = Po-- 1 - - --- · 8rc 2 a• ' (r <a); If! ( "' ·) If! "• ( a2 \ P =p -- 1--- +---· 1---j· 0 8rc 2 8rc 2 , r2 1 ' 
(r>a). 

where Po is the pressure on the axis of the cylinder and Ha = 2J/ca. 
The stability of a magneto-vortex configuration depends on the value of the parameter a. It is, for 

instance, well known that a cylindrical vortex is stable4 'Vhile a straight current is not. The vortex cor
responds to a = oo and the current to a = 0. : .. pparently the value a ...., 1 separates· the regions of sta
bility and instability of a magneto-•:ortex filament. 

Another kind of solution -a magneto-vortex configuration at rest- can be obtained from the equilib
rium configurations which are maintained by gravitation4 or by external pressure.5 In those cases the 
magnetic lines of force, and hence also the lines of the fluid current are close (they do not go to infinity) 
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and the center of gravity of the magneto-vortex configuration is at rest. 
In conclusion I want to express my gratitude to S. I. Braginskii for a discussion which stimulated the 

present paper. 
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