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Interaction between polarons is considered. It is shown that the formation of "bipolarons:• two 
polarons separated by a finite distance R and bound by a common polarization, is energet
ically feasible in crystals with parameters satisfying the condition n2/E :::; 0.05. 

THE interaction of an "excess" electron, introduced into an ionic dielectric, with the crystal polarization 
oscillations leads, as is known, to the appearance of polaron states.1 Polarons are majority carriers in 
ionic crystals; they determine the electrical, photoelectrical, and optical properties of these crystals. In
teraction between polarons reduces to electrostatic: repulsion and attraction caused by the influence of the 
inertial polarizational potential well of each electron on the remaining ones (such an attraction will be 
called hereinafter polarizational in the interests of brevity). Interaction between polarons was not taken 
into account in polaron theory1 since it was assumed that the polaron concentration was small enough. 
The interaction of two electrons in a common polarizational potential well was considered in Refs. 2 and 
3. It has been found that such compounds (called bipolarons) do not exist independently of the crystal 
parameter values. Physically, this means that the Coulomb repulsion force is dominant in this case. 
However, the electrostatic repulsion and polarizational attraction forces depend differently on the dis
tance between the centers of gravity of the polarizational potential wells and, in general, it cannot be 
stated beforehand that a stable state of a complex of polarons is impossible when this distance is not zero. 

The simplest of such complexes, two interacting; polarons, is considered below. The purpose of this 
work is to explain the possibility of the existence of such a formation. We shall henceforth call it a bi
polaron, thus ascribing to this concept a more general meaning than in Refs. 2 and 3. Moreover, our an
alysis permits an estimate of the influence of polaron interaction on the energy of each polaron and serves 
therefore as a criterion of whether it is permissible to neglect this interaction for the purpose of formu
lating a multielectron theory. 

The interaction of an "excess" electron with vac:ancies has also been analyzed; the interaction poten
tial obtained can be used to analyze scattering of carriers by impurities in ionic crystals. 

Using the methods developed by Pekar, 1 the Hamiltonian of a system consisting of a crystal with two 
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electrons introduced therein can be written as follows: 

fl =- (t.2 I 2 r•) ~1- ("2 I 2 fL) ~2 +up (r1, r2) + vp (r1, r2) + (e2 I n2)r12. (1) 

Here, the first two terms are the kinetic energy of the electrons, the third term is the interaction energy of the 
electrons with the inertiallypolarized crystal, the fourth is the energy of the inertiallypolarized crystal, and the 
last is the Coulomb repulsion energy; IJ- is the electron effective mass, n the optical refractive index of the crys
tal, r 12 the distance between the electrons, and the subscripts 1 and 2 refer to the first and second electrons. 

The Schrodinger equation with the Hamiltonian ( 1) can be replaced by an equivalent variational prin
ciple. The system energy is then determined by minimizing an appropriate functional dependent on the 
electron tf; functions and on the specific inertial dielectric polarization P created by the excess elec
trons, subject to the additional condition of normalization of the tf; functions. P is first minimized for 
a fixed tf; in the adiabatic approximation, after which the minimum with respect to tf; is found. 

The approximating function was selected in symmetric form: 

( 2) 

where a, b are centers of polarization potential wells and a is the approximation parameter. The de
formation of the tf; cloud of each electron is not taken into account in such a choice of the tf; function. A 
similar assumption is made, say, in computing the hydrogen molecule by the variational method which, 
as is known, does not lead to any substantial error. 

A computation similar to the above was made by Deigen4 for the F2 center, a system consisting of 
two positive vacancies, separated by a distance R in the ionic crystal, and two polarons. It should be 
noted that the analysis carried out is not consistently quantum mechanical since the lattice ion motion 
was considered to be classical. The Deigen4 results can be used if the terms giving the interaction be
tween the vacancies and the electrons and between the vacancies themselves are cancelled in the Hamil
tonian of the crystal- F 2 center system and if R is taken to be the distance between the centers of grav
ity of the polarized wells. 

The functional defining the system energy reduces to the following by substituting ( 2) and minimizing 
over P: 

( 3) 

where x = aR, c = 1/n2 - 1/E, and E isthedielectricconstant; the functions f1 (x), f3 (x), f4 (x) are cal
culated and tabulated in Ref. 4. 

A functional agreeing with ( 3) was also obtained by Moskalenko5 who analyzed the problem of a bipo
laron from the point of view of the second-quantization method. Moskalenko confined himself only to the 
tabulation of I ( x, R) for certain values of the crystal parameters, which led him to conclude the impos
sibility of the existence of bipolarons. A more general analysis will be made below which will lead to 
somewhat different results than in Ref. 5. 

To find the stationary states of the system, such values of R should be found for which the function 
I (R) would have a minimum. The condition 8I/8R = 0 leads to the equation 

( 4) 

whose roots are 

(5) 

As is easy to verify, minimization of I (R) with respect to x yields the sum of the energies of two 
polarons in the R = R1 = ~ case. This case is trivial. Substituting R3 from ( 5) into ( 4 ), we obtain 

I (x) =- (p.e4C2 / 4h2 ) (f 4 + fa/ n2c)2 / f 1· ( 6) 

Minimizing ( 6) with respect to x leads to the relation 

(f4 +fa/ n2c) [2fd~ + 2fd;/n2c- f4f'1- faf~/ n2c]- 0, (7) 

from which it is not difficult to determine the value of x which yields the minimum value of I (x): 

n2c = u (x); u (x) =- (2f;fl- f~fa) /(2f~f~- f~f4). (8) 

We tabulated the first part of ( 8) for various x. We have u (x) < 0 for x ::; 0.75. This result is in 
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agreement with the conclusion obtained in Refs. 2 and 3 that stationary 
states of the system do not exist independently of the crystal param
eters for R = 0 (two electrons in a common polarization potential 
well). The function u(x) is plotted in Fig. 1 for x > 0.75 u(x). 
Using the crystal parameters E and n2 and Fig. 1, the corresponding 
value of Xmin can be found and Imin can then be determined from 
( 6 ). 

It follows from Fig. 1 that the solution ( 6) exists only if n2c > 0.88 
or 

n 2 1 s < 0.12. (9) 
FIG. 1 

and not for arbitrary values of the crystal parameters. The values of 
E and n2 for a large number of crystals are cited in Ref. 6, for ex

ample. The inequality ( 9 ) is not satisfied for all the crystals cited in Ref. 6. 
As Davydov3 and Deigen7 have shown, the methods of polaron theory are applicable to metal-ammonia 

solutions. Consequently, our analysis is valid also in this case. The parameters of metal-ammonia so
lutions ( E = 22, n2 = 1. 76 ) satisfy inequality ( 9 ) . Figure 2 shows a plot of I ( R) for such solutions. As 

is seen from the figure, I (R) has a minimum at R Rl 4 A and 
accordingly at a= 0.42 x 108 cm-1 • However, this minimum ap
pears to be located somewhat higher than the sum of the energies 
of the two polarons. According to the variational method, a phys
ical meaning should be ascribed to that root of ( 4) which gives a 
lower value of the functional being investigated. Consequently, the 
root R = R3 must be discarded in this case. 

Let us try to explain for which values of the crystal param
eters the bipolaron energy ( 6) becomes less than the sum of the 

t:::==:::;.;===;::==:::;;:===;;•;=.~JJ pol 1 to zo w R,A energies of the two polarons, i.e., the relation I 2Jpol > 1 is 

FIG. 2 
satisfied. 

Using the value of I according to (6) and Jpol from Ref. 1, the 
criterion J[or the existence ofbipolaron states can be represented as: 

2.56 (f4 + f3! f!2C)2 I f1 > 1. (10) 

The function on the left side of ( 10) was tabulated for various values of n2 and c and for the appropriate 
x obtained by solving ( 8). The ratio II2Jpol beeomes greater than unity for 

n2 1s<,"0.05 (11) 

and for the appropriate x = 1.5 -1.6. The maximum value of this ratio for n2 IE = 0 is 

{/I 2 f pol) max= 1.08. ( 12) 

Hence, the transition of polarons into the bipolaron state is energetically feasible for crystals with values 
of the parameters E and n2 satisfying ( 11 ). This must be reflected substantially in the properties of 
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FIG. 3 

such crystals (magnetic properties, formation of color centers, 
effective mass, and current carrier mobility, etc.). 

The approximate wave function of the e-ar kind used above 
simplifies the computations considerably but is not flexible 
enough. Since the energy gain calculated above for the bipolaron 
is small, the results of the computation made require verification 
by using a more flexible approximation function. 

According to Pekar, 1 the best results are obtained with the 
variational method with one approximation parameter by using a 
function of the form 

·~ = A (1 + rxr) e-", (l3) 

which we have indeed used instead of the hydrogen-like functions 
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{ 2a). The functions corresponding to f1 { x), f2 { x), and f4 { x) in { 3 ) cannot be written in explicit form 
in this case because of the great complexity of the resulting integrals. However, use of the Kopineck8 re
sults permitted these functions to be tabulated and the solution to be found graphically. The error arising 
in such a solution is negligible. The numerical results obtained by using { 13) are in complete agreement 
with those cited above [see relations { 11) and { 12) ]. 

Evidently, taking the mutual deformation of the polarizing potential wells of the interacting carriers 
into account, as can be done by introducing an additional parameter into the approximating function, can 
only lead to a less stringent condition on the existence of the bipolaron than { 11 ), since such a parameter 
affects the calculated bipolaron energy more than the energy of the individual polaron. 

The computation carried out can be used to estimate the magnitude of the polaron interaction as a 
function of their concentration. As an example, we have obtained a configuration curve for KCl {Fig. 3 ). 
It is seen from the figure that the polaron interaction is still small at R =:!: 200 A {this corresponds to an 

P (A) j F (p) (c v) 1/F(P)-Jpoll(eV) / -!i (e v) 

1.64 -1.307 1.142 I 1,832 
3,35 -0.906 0.740 U. inu 
.1.50 -0.672 0.507 0.547 
9.81 -0.462 0.297 0,307 

13.6 -0.386 0.221 0.222 
17.1 -0.341 0.176 0.176 
34.2 -0.253 0.088 0.0879 
51.4 -0.224 0.059 0,0586 
68.5 -0.209 0.044 0.0440 

CX) -0.165 0 0 

average polaron concentration of the order of 1018 em - 3 ); the error in 
determining the polaron energy in the single electron problem is not 
more than 5 percent in such concentrations. This error is 5 - 20 per
cent for concentrations from 1018 -1019 • The error in determining the 
energy becomes very substantial at concentration n =:!: 1019 {R ~ 40 A 
in Fig. 3) and the polaron interaction must be introduced into the basic 
Hamiltonian of the multielectron problem. Incidentally, an appropriate 
excess positive charge is needed in the crystal to neutralize the excess 
electrons at such high concentrations and other types of interaction be
sides the polaron one should be taken into account in the basic Hamil
tonian. 

An analysis of an electrically neutral system consisting of a crystal 
with a vacant lattice site and an electron introduced into the crystal is of interest. The Hamiltonian of 
such a system is written as 

{ 14) 

The first term here is the electron kinetic energy, the second is the electron interaction with the polarized 
crystal, the third is the polarized crystal energy and the last is the electron interaction with the vacancy. 
Replacing the Schrodinger equation with the Hamiltonian { 14) by an equivalent variational principle, we 
arrive at the corresponding functional. Minimization was made with the aid of a hydrogen-like 1f; func
tion of the excess electron. Exactly the same as in the case of two excess electrons, considered above, 
we can arrive at a functional that is dependent on x and p : 

{15) 

where p is the distance between the center of gravitiy of the polarized potential well of the electron under 
consideration and the ''vacancy;" p {x) = 1 - e-2x{l + x) + { 5Ec/16) x. 

Minimization of F with respect to x was carried out for various fixed values of p. The results of 
a computation for a KCl crystal are cited as an example {see table). Values of the system energy are 
given in the second column; the third lists the interaction energy between the polaron and the vacancy, 
equal to F ( p) - Jpol• while the fourth gives the values of the Coulomb energy for comparison. 

As is seen from the table, the interaction energy between the polaron and the vacancy is notably differ
ent from the Coulomb energy only for p < 10 A. 

The authors are grateful to S. I. Pekar who provided guidance and a number of valuable remarks. 
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A theoretical study is made of the characteristic features of the oscillations of the magnetic 
moment of a metallic specimen at low temperatures in a pulsed magnetic field. 

IN connection with the use of the pulse method for the study of the De Haas-Van Alphen effect in strong 
magnetic fields, 1 it is of interest to clarify the peeuliarities of the oscillations of the magnetic moment of 
a metal at low temperatures in a variable magnetic field of a pulsed type. 

In Sec. 1 of the present paper, we give qualitative consideration to this problem, and show that the os
cillation properties of the magnetic moment of a metallic specimen in a pulsed field depend essentially on 
the ratio of the characteristic dimension in the problem of the penetration of the variable field into the 
metal to the dimension of the sample itself. In See. 2 and 3, formulas are obtained for the oscillating 
part of the magnetic moment for different values of this ratio, and their analysis is given. 

1. OSCILLATIONS OF THE MAGNETIC MOMENT OF A METALLIC 
SAMPLE IN A PULSED FIELD 

(Qualitative Considerations) 

The oscillations of the magnetic moment of a metal are determined by the quantized motion of the con
duction electrons (current carriers ) in the magnetic field; their periods and amplitudes are connected 
with the form of the electron dispersion law near the Fermi surface.2 There are usually some groups of 
electrons in the metal with different dispersion laws, and each of these makes its own contribution to the 
oscillations of the magnetic moment. In what follows, we shall consider the contribution to the oscillating 
part of the magnetic moment of only one such group of electrons with the particular dispersion law 
E = E (p) (E =energy, p =quasi-momentum of the electron). 

If the homogeneous field H is constant, then the oscillating part of the magnetic moment* of the elec
tron gas is given by the following formula: 2 

Mosc= V ~ ''P'n(H)cos (7j + 1in); (1) 
n=l 

V = volume occupied by the electron gas (the volume of the metal); >Itn (H) = >Itn ( H, T) = some 
slowly changing function of H and the temperature T; a = c Sm ( ~)/eli, where Sm ( ~) = the ex-

*We are considering the component of the magnetic moment in the direction of the magnetic field. 


