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The infrared absorptivity of metals is stpdied by means of the quantum kinetic equation. The 
quantum properties of the electromagnetic field and the anomalous character of the skin effect 
are taken into account. 

I. In the infrared region the energy tiw of a photon is usually comparable with or greater than the im
precision kT of the Fermi level for electrons in a metal, so that a quantum method of study is required}-3 

We shall first endeavor to carry through a qualitative analysis of the light absorption mechanism of a 
metal. In an electromagnetic field the equilibrium electron distribution function f0 ( Ep) is modified by an 
additional small term which is proportional to the field amplitude. If the electromagnetic field is regarded 
as classical (unquantized) the electrons cannot rise appreciably above the breadth kT of the Fermi level, 
because the energy acquired by an electron in a mean free path is always small compared with this 
quantity. 

At high temperatures (T » 8) electrons are obviously able to absorb and emit phonos of all momenta 
up to the limit. This results in relatively high absorptivity which is proportional to the temperature. 

At low temperatures (T « 8) momentum exchange is difficult. Indeed, there are almost no "large" 
phonons, so that they are seldom absorbed. On th~~ other hand the majority of the electrons do not possess 
sufficient energy for the emission of "large" phonons, since the average electron energy above the Fermi 
level is of the order kT, which is small compared with k8. As a result there is weak absorption which 
decreases rapidly with temperature (,..., T5). When we take into account the quantum properties of the 
field an especially important difference appears in the limiting case of low temperatures and large elec
tromagnetic quanta, when 

(1) 

Indeed, electrons which absorb quanta rise far above the region of the Fermi level. To be sure, they are, 
as previously, unable to absorb "large" phonons, but because of their high energy they can emit phonons 
over the entire spectrum. In this respect the quantum absorption mechanism in the limiting case ( 1) is 
similar to the classical absorption mechanism at high temperatures. 

We shall here discuss the near infrared region for which 

(2) 

where T is the mean free time, c5 is the skin depth v0/w is the distance traversed by an electron during 
one period of vibration of the electromagnetic field and v0 is the velocity of an electron at the Fermi 
level. It will also be assumed that the photoconductive threshold has not been reached. For most metals 
( 2) is satisfied when A. « 100 j.L. 

Except at very high temperatures, the skin effe<Ct in the infrared region is anomalous, i.e., 

( 3) 

If, however, it is assumed that the electromagnetic: field and the electron distribution vary little in a mean 
free path I., for the purpose of calculating the volume absorptivity of a metal it is possible to employ 
perturbation theory, as was done by Holstein.2 As Holstein gave a result only for the limiting case (1) and 
did not show his calculation, we began with a similar calculation. 

In calculating the probability of photon absorption it is necessary to take into account all second-order 
processes with simultaneous participation of a photon and a phonon; there are 8 such processes in all. 
By simple calculation the expression for the volume absorptivity Av (A = 1 - r, r is the reflection 
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coefficient) assumes the general form 

Av=2ojc-:(T), 

after introduction of the effective mean free time 

': (T) = -:(cl) (T) I? (T), 

where 'T ( cl) ( T) ....., 1/T is the usual high-temperature mean free time and* 

e1r 
w(T) = ~(I_)• 'i dv·v' (~ + v-a _ v+a ) t;w 
' a 0 .) ev- 1 . ev-a.- 1 ev+a- 1 , <X = kT • 

0 

When kT » k ;t» tiw we necessarily have cp F:j 1, whereas in the other limiting case (1) cp F:j 28/5T 
and consequently, 

't: (T) = (5T I 28) 't:(cl) (T) = 5/2 't:(cl) (8), 

which is in agreement with Holstein's results.2 

We note that (5) and (6) are obtained simply from the quantum kinetic equation derived in Ref. 1. 
For convenience we introduce the notation 

'f(Ep) = m-c(T)D(p), 

where 'T ( T) is given by (5) and it can easily be shown that 

00 

\ dEw(E) =- 1. 
J ' 
0 

Then the kinetic equation (17) of Ref. 1 becomes 

. f + P at I A-1f E [ato 1 ato p 1 (£ )] tw 1 - -d +-: 1= e -a + -, a--.,.--(T)'JJ P • m r p iw-r p zwm-r ' 

The term ( p/m) af1 /ar drops out of a spatially uniform distribution, after which, in virtue of 
1/ 'T ( T), the kinetic equation is solved simply by successive approximations: 

f (I) e ( ato') f(II) e E 
1 (p) = ,.---- Ea- , 1 (p) = ~(T)(Ep)w ( p), ... 

t(l) p ~ w m't ~ 

The first approximation naturally yields the dielectric constant 

s = l-4>:Ne2 jmw2 , N = (8>:j3)(p0 /2d)3 

(where N is the electron density), and the second approximation gives the conductivity 

cr = Ne 2 / mw2't (T), 

W» 
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(4) 

(5) 

(6) 

(7) 

where, as expected, 'T( T) is given by (5). A free electron cannot absorb an electromagnetic quantum; 
therefore losses occur only through electron collisions with phonons (or impurities) or with the metal 
boundary. Since, according to (2) and (3), in the infrared region the path v0 /w of an electron during a 
period of the field vibration is small compared with the mean free path £, for calculation of the surface 
loss it is possible to neglect collisions with the lattice in first approximation. For diffuse electron re
flection from the boundary the surface absorption is given by3 

(8) 

However, one must first be certain that even for very high frequencies it is possible as in Ref. 2 to sim
ply add volume and surface losses in first approximation. 

2. We now proceed to a rigorous examination of the problem with allowance for the anomalous nature 
of the skin effect. We first note that in the infrared region lei» 1, so that it is sufficient for us to con
fine ourselves to normal incidence of electromagnetic waves on the surface of the metal.3 Then all quan
tities will depend only on the distance z between any point and the metal surface. 

*In all calculations it is assumed that kT, k@ and t:i w are small compared with the electron energy 
limit E0• 
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In momentum space we select spherical coordinates (p, iJ, cp) with the axis directed into the metal 
and perpendicular to its boundary, while the angle cp is measured from the direction of the electric 
field E. 

It is known that in the case of the anomalous skin effect the electron distribution function must be sub
ject to boundary conditions whose form depends e:ssentially on the character of electron reflection from 
the metal surface. Certain theoretical considerations,3 as well apparently as experiments, would indicate 
diffuse reflection. (t) 

We denote by f1 and 
and approaching ( Pz < 0 ) 

fp) the respective values of f1 ( p, z) for electrons reflected from 
the metal boundary. Then the condition for diffuse reflection is 

f~l) (p, 0) = 0. 

In addition, we must impose the condition for vanishing of f~ 2) within the metal: 

f~2) (p, oo) = 0. 

We introduce the dimensionless coordinate x == wz/v0 and the dimensionless quantities: 

7j = v0 f6>~, x = lf6>-r. (T), s = -r.(T)/~. L-1 = (i +xs)jcos&. 

With this notation the kinetic equation (7) becomes 

L-1fl + iJfl/ ax= (evo/6>) E (x) x(p), 

where 
) x(p) =- il-1 sin&cosrpiJf0 fiJEp + ixtan&cosrp·t\I(Ep)· 

The general solution of this equation can be written as 
X 

V (' A 

fr(p, x) = e t} ~ dx'E (x') exp {(x'- x) L -1}x (p). 

Determining the lower limit of integration from the boundary conditions (9) and (10), we obtain 

X co 

(pz > 0) 

(9) 

(10) 

f~1 J (p, x) = e ~ ~ dx'E (x') exp {(x'- x) L -1}x (p), fi2> (p, x) = - e;;; ~ dx' E (x') exp {(x'- x) L -1 } x (p). 
0 X 

The corresponding current density 

i (x) = - (2~~)3 { ~ dp ·sin & cos rp-!; fi1J (p, x) + ~ dp ·sin & cos rp ~ f~2> (p, x)} 
h~ hG 

after some transformations becomes 

·rr 

3Ne2 co~ r 2~"' ~ A j (x) =- -4 - dx'E (x') \ dEp drp \ d& sin2 &cos rpexp{- I x- x' IL - 1} X (p). 
nC!lm • J 

0 0 0 0 

Inserting this expression into the equation for the electric field we obtain, since the term ( w/c )2 E asso
ciated with the vacuum displacement current is small in the infrared region: 

"" 
E" (x) = ~ ~ dx' E (x') K (x- x'), 

0 

where 

r . 3 o 
-.=tT'YI"· 

(11) 

An equation such as ( 11) is basic in the theory of the anomalous skin effect and has been thoroughly studied 
by Reuter and Sondheimer. 4 

Specifically, for the surface impedance 
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Z = R + iX = - i ( 4r:v0 I c2 ) E (0) IE' (0) 

Reuter and Sondheimer's results easily yield the expression 

z = i 4;0 [I (C)]-1, 

where 
co 

I (C) = + ~ dt · In ( 1 + C k X)) ; 

-"-
~ 00 ~ 2 f 

k (t) = ~ dxK (x) e-itx =-+ ~ dEp ~ dcp ~ d% sin2 it cos 9 - 1-+----,--£2- 1-.-x (p). 
-co 0 0 0 
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(12) 

(13) 

In virtue of (2) we have for the infrared region I~ I « 1. It is therefore reasonable to attempt a rep
resentation of the surface impedance by a power series in ~. However, when the integrand of (12) is di
rectly expanded in ~ divergent expressions appear. As will be seen below, this follows particularly from 
the fact that the expansion does not take place in whole powers of ~. 

For the purpose of obtaining a suitable expansion we can follow Dingle5 and use the Mellin transform 
of I(O,whichisgivenby 

' ' 

co 

M (z) = ~ d~l (C) ~z-1 • 
0 

(14) 

.... 
\ 
\ 
I 
I 
I 

(See Ref. 6, for example). Let the integral be bounded as follows in the region 
z1 < Re z < z2: 

""' 11a 112 I ~ d~ II (q I ~z-1 < const, 
0 

I 
I 

; 
I then the inverse transformation is given by 

/ 
/ ----/ 

and exists for z1 < c < z2• 

c+ioo 

I(()=~ (" M (z):-zdz 
.... rct j 

c-ioo 

In our case we easily obtain from (14) and (12) 

00 

M (z)- 1 \ dtk-z (t) t2z. 
- zsin1tZ j 

0 

Substituting this expression into (16), we obtain after changing the sign of the integration variable 

c+ioo oo 

/(()= 2~i ~ dz-z-s---c;n_z_1tz-~dte(t)t-2z, 
C-ioo 

with the condition (15) satisfied when 

(15) 

(16) 

( 17) 

(18) 

In order to obtain an expansion in increasing powers of ~ we naturally close the integration contour at 
infinity in the right-hand half-plane and use the theory of residues (see the figure). However, for all z 
outside of the limits given by (18) the integral 

co 

(19) 

diverges. This difficulty can be overcome if we succeed in constructing an analytic continuation of (19), 
as was done in Ref. 5. 

For this purpose we assume now that z lies in the zone given by (18) and write (19) in the form 
co 1 co 

~ dte (f) f-2z = ~ dt kz (f) t-•z + ~ dt e (f) f-2z. (20) 

0 0 1 
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We shall also assume that we have obtained the expansion 

co "" 
k ( t ~ I) = a ~ ant2", k (t:;:;:,.. I)= t-1b ~ bnt-", a0 = b0 = l 

n-o n~o 

and hence 
"" "" 

kz (t ·~I)= az ~ An'(z) t 2", kz (t:;:;:,.. I)= t-zbz ~ Bn (z) t-n. 
n-o n-o 

The coefficients An and Bn can be expressed simply in terms of an and bn; specifically, 

A0 =I, A1 =a1z, A2 =a2z+ 1/2 z(z+I)a~, ... 

(21) 

(22) 

Substituting the expansions (21) into the first and second integrals of (20), respectively, we obtain after 
integrating 

"' 00 az A z) bz B z) 
I dt e(t) t-2z= "" ( ."( + n( ) . 
) L.J 2n - 2z + 1 3z + n - 1 

(23) 

o n=o 

For the integration it was assumed that (18) is fulfilled, although the final result, unlike the integral on 
the left, is analytic over the entire z plane. 

This analytic continuation can be written in a somewhat different form. We note that the lower limit 0 
did not contribute to the integral in (20). Therefore the analytic continuation (23) can be written as 

(24) 

The arbitrary constant in the original function 

X 

'¥ (x, z) = ~ dt kz (t) t-2z 

is derived from the condition that 'It ( 0, z) vanish in the region (18), since otherwise (24) obviously is 
meaningless. 

Substituting (23) into (17) we have 

c+ioo 

I (C)= 2~i ~ dz 
az~z 

z sin 1tZ 
c-ioo n=O 

When the integration contour is closed on the right-hand side (see figure) it encloses the zones for sin 1rz 

at z = 1, 2, 3 •••• and, for the first term, the zollles z = ( 2n + 1)/2 (n = 0, 1, 2 •••• ). A complication 
appears in the fact that, whereas the coefficients An are easily obtained, the coefficients Bn cannot be 
given in explicit form. Indeed, according to (2) K « 1, and thus L = ( i + KS) - 1 cos ~ ~ - i cos~ is a 
bounded quantity. Therefore in (13) an expansion in Lt is possible for small t. On the other hand, when 
t » 1 Lt cannot be regarded as large, so that an expansion in ( Lt) - 1 is not permissible. In Dingle's 
classical treatment5 a number replaced the operator £, so that it was possible to integrate in (13) and 
then expand the result in reciprocal powers of t. 

We shall first take the residues at the poles z "= ( 2n + 1 )/2, and in calculating the residues due to 
sin 11'Z we shall use E q. (24) for the analytic continuation. The result is 

I (C)= (a:)'1' ~ ~~ -!!~ (a(t An ( n + {)-~ ~ (-n1)" C" ~ dt kn (t) t-2". 

n=O n=l 

If the integration contour were closed in the left-hand half-plane it would be possible in exactly the same 
way to obtain an expansion in reciprocal powers of ~. which would correspond to the radio frequency 
range. But it would be necessary to know an explicit form of the Bn. 
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Expanding (13) in powers of ( Lt) 2, we obtain 

2Tt 2 a=-+ ~dE~ dCf ~ d-& sin2 &cosr.pL x (p), 
0 0 0 

The values of An can be obtained from (22). Furthermore, according to (13) 

oo n co 2rc 2 oo t-1 

~kn(t)t-2ndt=(-It(~rn ~dEk ~d9k ~d&ksin2 &~<cosr.p~<~dt-t-2n 12 ;t;:2 x.(P") 
k-1 0 0 0 

where 
n 

" "2n ' ""'-2 "-2 -1 
1Xmn = Lm fl (L; - Lm ) ; 

i=1 

the prime denotes that the product includes no factor with i = m. From our definition of the original 
function 

Thus 
Tt 

oo n oo 2rc 2 n n 

~ dt. kn (t) t-2n = + ( ~ r-1 fl ~dEn ~ dcpk ~ d-&k sin2 & cos 9~< L;:1 ~ L;:+l fl (Li2 - L;;;2)-1 x. (pk). 
k=1 o o o m=1 i =1 
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When L = ( i + KS) -i cos ?J and ~ = i37]2 I 4 are substituted in these expressions I ( 0 can easily be rep
resented as a series in the small dimensionless parameters 77 and K. Limiting ourselves to quadratic 
terms in 7J and K, we obtain after some tedious calculations 

A ~_!_R_3 -1 1 2(161 8723) [83 (3' A 2 A afo)] ~ 1t -;;-~+2~'1J x--T~YJ 35 n2+ 26880 -3~'1J>< 1720 +$,8 scos&-scos &-cos&scosv, 7fE 

+ 3~x2[ <P (~2cos&- scos&, ~~) + <P (s cos&+ cos& s -~- s, ~ )] - 3~·)r 1 x3 [~ + <P ({ s -- ~2 • <?)]' (25) 

-~ X = 4~71-1 + : 2
30 ~'IJ- 3~x<P ( s cos&, ~~)- { ~y~-1 x2 [ 1 -1- 2<ll (s, <f)]. (26) 

Here {3 = v8 /c, 7J = v0 /wfJ, K = 1/wT(T) and <I> denotes integrals of the form 

Tt 

00 2Tt' 2 

<P (s~ ·?)=~~dE ~ dcp ~ d&sin2 &·cos cp. s sin &-cos cp ··?(Ep)· 
0 0 () 

It is easily seen that when the operator s is replaced by unity (25) and (26) go over into the correspond
ing expressions which were obtained in a classical treatment by Dingle. 7 The first term in (25) coincides 
with (8) and thus gives the loss associated with electron reflection from the metal boundary, whereas the 
second term coincides with (4) and thus gives the exchange loss. Thus in first approximation we actually 
have a simple addition of exchange and surface losses. 

All of the integrals <I> are of the order of unity and can be calculated without great difficulty. How
ever, the corresponding expressions cannot be written in compact form. We note that the ratio ( 77/ K ) 2 

= (£/o )2 for most good conductors is large compared with unity.* Therefore in (25) the first two correc
tions, which are proportional to 77 2 and 7JK, are usually most important. A calculation shows that 

*For example, for Cu, Ag and Au (£/o )2 "' 10 even at room temperature. 
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8/T 

( 3 , A A at \ 1 ( r )• \ 1 [ ( kT \2 <P 8 s cos & - s cos2 & - cos & s cos & , . a; ) = 'I' (T) e .l dv. v4 1920 484 - 569v2 UPo) ] 
0 

X [ 2 coth ~ - coth ll + v + coth ~-=-~ + 2 ( ll + v) e~+v - 2 ( ll - v) e~ -v l· 
2 2 2 (e~+v _ 1)2 (e"'-'' -1)2 _ (27) 

It has already been mentioned that in the infrared region we usually have 1i w > kT. We therefore as
sume that 

1;,w{I<T I 'fiw{hT , 8/ T 
e ~'., e :;>>e . ('28) 

Then when terms of the order of e-li w/kT are neglected the integral in (27) is greatly simplified and in 
our approximation ( TJ2 » K2 ) the absorption becomes 

8/T 

A ~ 3 R 2r.l -1 1 r 2 (16 I 2 + 8723) -- ~ { 8:l 1 ( T ) 4 I d 4 h v 1 [ 84 569 2 ( kT ) 2]} ~ 4 1-' + t-'ll " - 4 P'l 35 n 26880 P'll" 640 + 'I' (T) e J v. v cot T . 320 4 - . v UPo . 
0 

On the basis of (27) in the classical limit ( 1i w « k8 « kT) we easily obtain the following expression for 
the second absorption correction: 

- ~1j" J_ [567- _;_ 569 ( ke )\2
] • 

640 3 Up0 

If we immediately set s = 1 in (25) the result is - /3TJK83/12, which agrees with the corresponding 
term in Ref. 7. It appears that in Ref. 7 all correetions beginning with the second were calculated incor
rectly, because even when liw « kT it is not always correct in the case of the anomalous skin effect to 
approximate the collision integral by means of an expression of the form ftfr (see the comment at the 
end of Ref. 8). 

When the inequalities (28) are fulfilled it follows from (6) that 

Ei(T 

(T)4 1 4 v eke 
'? (T) ::::::: 2 e J dv v coth T- 3T 1iw • (29) 

0 

An investigation of this expression shows that from room temperature down to the temperature of liquid 
helium the mean free time T ( T) = T(cl) ( T )/ cp ( T) is relatively independent of temperature and changes 
smoothly from r(cl) ( T) at high temperatures to % r(cl) (8) at low temperatures. Classically, as we 
know, T (T) increases very rapidly as the temperature is reduced (at low temperatures it is inversely 
proportional to T•). It is significant that (29) was derived subject to the relatively mild limitations of 
(28); therefore quantum effects play an important part at least when 1i w ~ ( 2 - 3) kT. 

It must be remembered that the results obtained here are based on the assumption of a spherical Fermi 
surface for the electrons of a metal and can appar•Emtly be applied only to polycrystalline specimens. Of 
course, m and v0 mean averaged quantities. In addition, and especially at low temperatures, interelec
tronic collisions may play a large role. This question will be discussed at a later date. 

The author is profoundly grateful to V. L. Ginzburg and V. P. Silin for their continued interest and val
uable comments. 
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