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according to Landau, to use the Gallilean relativity principle. Then 
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-- ae P + s I t' ( ') an d , v = a-p- = m Pa' ~ p, P iJp' P , (16) 

where m is the mass of the free electron. However, in a real metal m may differ from the mass of the 
free electron. Furthermore, this quantity, as well as the function f ( p, p'), can depend in principle on the 
direction. In addition, the region of large electromagnetic fields, t(p, p') may also depend on the elec
tromagnetic field. 

In conclusion I wish to thank V. L. Ginzburg for his interest in this work. 
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A formalism of invariant matrix polynomials L~:· f. J is ?eveloped for systems of particles 
of arbitrary spin. A general method for calculatui.g' Lf, R_~ J is found, and the polynomials 
for total spin 0, % and 1 are written out explicitly. Equations (3.2)- (3.7) make the expan-

' sion of any invariant operator in polynomials L f, •l J a simple matter. It is shown that the 
coefficients in such an expansion of the scattering matrix are directly related to the phase
shifts. Formulae are derived for calculating the phase-shifts to any order of perturbation 
theory. In many specific examples this method simplifies the calculation of phase-shifts. 

1. INTRODUCTION 

T 0 make comparisons of various theories with experiment, one must deal either with cross-sections 
or with phase-shifts. Whenever possible the phase-shifts are to be preferred, since they express the 
properties of the scattering with maximum conciseness. For example, the absolute sign of a phase is 
highly significant, as it indicates a qualitative difference (attractive or repulsive interaction) between 
two processes which may have equal cross-sections. 

There is no existing theory which describes satisfactorily the strong interactions. But there are sev
eral theories 1- 3 which give a reasonable qualitative picture of some particular processes. To compare 
these theories with one another, it is also convenient to study the behavior of the phase-shifts which they 
predict. 
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The interaction operator is specified in different ways in different theories. It may be given as a scat
tering matrix, as in perturbation theory,4 or as a combination of various spin-dependent scalar potentials,2•5 

or as an integral operator, for example in the Tamm-Dancoff method.6•7 To calculate the phases corres
ponding to given values of J, i and s, one must expand the interaction operator in spin-dependent spheri
cal harmonics g§; RI (n), as for example in the papers of Tamm6 and Zharkov.8 But the lack of covari
ance of these harmonics makes the expansion very complicated. The problem is greatly simplified if one 
expands the interaction operator into the invariant matrix opyrators ( 2.6') which are bilinear combina
tions of the G §; ~ ( n) • The superiority of the operators L1~. £~ J over the functions G §; RI ( n) is as great 
as that of the tensor notation HJLV over the six components of the vectors E and H for writing down the 
Maxwell equations. 

In addition, the use of these operators greatly simplifies the diagonalization of the S-matrix with re
spect to the spin s, and hence the specification of the scattering in terms of a minimum number of real 
phases. The situation is similar to that which arose in the work of Rohrlich and Eisenstein,2 with the dif
ference that we are here dealing with a known S-matrix and the problem of finding the phase-shifts is 
reduced to the solution of algebraic equations. 

As a further generalization of the invariant polynomials ( 2.6' ) , one could introduce matrix polynomials 
depending on three or more unit vectors. This would simplify the description of inelastic collisions in 
which three or more particles are produced. 

2. MATRIX POLYNOMIALS. EXPLICIT EXPRESSIONS 

Let < "A', ~'; p' I R I p ; ~, "A> be an operator depending on two vectors p and p' and invariant under 
three-dimensional rotations and reflections of the coordinate-system. "A and "A' are spin variables de
scribing the state of the system before and after collison. ~ and f are sets of parameters describing 
the nature and the isotopic spin of incident and scattered particles. To eliminate the wave-functions of 
the initial and final states, we temporarily transform to an arbitrary representation g. Then the general 
principles of transformation theory9 give 

(A',~'; p'/RJp; ~.A)=~()/,~'; p'Jg')(g'/Rig)(gjp; ~.A). (2.1) 
g'g 

Separating the spin and angle dependence from the radial dependence of the wave-functions < "A', ~'; p' I 
and IP; ~. "A > , we have 

(A', ~'; p'l = ~ (~', p'; J', M', s', l' I (A', n'; J', M', s', l'l (2.2) 
l'M'l's' 

I p; ~. 1.) = ~ ll, s, M, J; p, 0 ll, s, M, J; n, A), (2.2') 
JMls 

where 

/l, s, M, J; n, A)= (gj·,~Mt (n, I.), (1., n; J, M, s, l/ = g5·,~ (n, /.) 

are eigenfunctions of the operators J 2, J z• L2 and S2 • Substituting Eq. (2.2) and (2.2') into (2.1) and 
summing over g and g', we obtain 

(A', e; p'iRip; ~. /,) = ~ ] (~', p'; J', M', s', l'/Ril, s, M, J; p, 0 
l'M's'l' JMsl 

X (I.', n'; J', M', s', l' ll, s, M, J; n, /.). (2.3) 

Because of the rotation-invariance, J and M are conserved; the matrix elements of R which appear 
in the sum are diagonal in J and M and depend on M only through a factor oM'M. Thus 

(~', p'; J', M', s', l'iRil, s, M, J; p, ~)=onBM'M<~', p'; s',l'/R,Jl,s; p,~), (2.4) 

so that 

(A', ~'; p' I RIp; ~.I.) = ~ ~ ~(~', p'; s', [' j R1 /l, s; p, ~) ~ (1.', n'; J, M, s', l'll, s, M, J; n, A). (2.5) 
J s's l'l M 
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The reflection-invariance of R restricts the summation over £ and £' in Eq. (2.5) to values which con
serve the parity 1r. Thus Eq. (2.5) is precisely the expansion of the operator R into generalized matrix 
polynomials 10 of the form 

(1!, n'; J, s', l' jl, s, J; n, /...) = ~(/...', n'; J, M, s', l' jl, s, M, J; n, /-) 
M 

or in a different notation* 

Ls',s ('' '· ) ) 4 ~ l'.s'( , '') ( l,s )+( /) I'; z;, '· , n , ., n = :r L.J g 1,M n , A g;,M n, .. 
M 

Using the orthogonality relations of tensor harmonics, we can show that 

\ L"'·~' ( ') Ly'6 ( ' ) d I ' ' ' ' L"'· 6 ( ) J lm; J D, D np;J, ll, flo ll = -t'I;OJJ,OmnO~y l, p; J 0, Do . 

(2.6) 

(2.6') 

(2.7) 

We now consider the explicit calculation of the matrix polynomials (2.6'). First we express gJ' ~ in 
terms of angle and spin functions Y £, m and X s, J.t, according to the rules for transforming from the J, M, 
s, £-representation to the £, m, s, p, -representation. This gives 

gj·.~ (n, /...) = ~ (J, M, s, ljl, m; s, p.) Yz, m (n) Xs, p. (1.), (2.8) 
m,p. 

where < J, M, s, £ I£, m; s, p, > is a Clebsch-Gordan coefficient.U In the representation with s2 and Sz 
diagonal, Xs,p, P..) = o p,A. and so 

X (J, M; s, ljl, M- p.; s, p.) Yz',M-p.' (n') Y;, M-p. (n). 
(2.9) 

At first glance it would appear convenient to reduce the triple sum to a sum over M alone by using the 
factors o p,A.· But this is not the best way to proceed. It would give us, the values of particular matrix ele
ments with known A. and A.', but it would not allow us to express L f,• 2. J in closed form as a sum of vec
tor spin operators 12 which reduce in the case s' = s to ordinary spir{ ~atrices. So we keep the double 
sum over p,' and p,, and express Op,'A.'Op,A. by means of ( 2s' + 1) ( 2s + 1) combinations of the three 
components of the relevant vector operators. The summation over M can be performed by using recurs
ive relations of the form t 

(2.10) 

where n, i are integers, and D (£; n, i) is a differential operator independent of m and operating upon 
Y£, m (n). Having chosen the appropriate values of n, i, we avoid the appearance of Clebsch-Gordan 
coefficients involving m, and we can complete the summation by using the addition theorem for spherical 
harmonics 

(2! + 1) Pz (n'n) I 4-r: = ~ Yz, m (n') v;, m (n). (2.11) 
m 

Considering only processes in which the spin is not changed in the collision, we exhibit the explicit forms 
of the matrix polynomials for S = 0, %, 1. These are the cases of greatest physical interest. 

S = 0. The polynomials L 1:2;£ describe the scattering of two spinless particles or the singlet scat
tering of two particles with spin. They are identical up to a factor with Legendre polynomials 

LY;0z; l (n', n) = 4.-r ~ y l, m (n') v;, m (n) = (2! + 1) Pz (n'n). (2.12) 

m 

S = % . The polynomials L ~£1(~ were first introduced by Tamm and collaborators3 and have been 
applied extensively to the scattering of 1r-mesons by nucleons. 13 • 14 Transitions£-£'=£± 1 are for-

*The factor 47r is put in so as to eliminate factors of ( 1/ 47r) from the explicit forms of the polynomials. 

t The sign ± ( 'f m) means that all four combinations of sign are allowed for the two m 's. 
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bidden by parity-conservation, so that only the two polynomials L r2~ ~' J _ %; J and L J~ ~~ J + %; J 

are of interest. We derive the explicit form of the first of these from Eq. (2.9). Using the known values of 
the Clebsch-Gordan coefficients, 11 we find 

()::_:/:. 1_,1,, 1 (n', ).'; n, ),) = ~ { ~ (J +M) Y 1-'J,M-'/, (n') Y~-'-'J,,M-'/, (n) O•J,),'o'J,), 
M 

+ ~ V(J + M) (J- M) Y 1-'J,, M-'/, (n') y;_,1,, M+'!, (n) o.1,),' L 1,1, 

M 

(2.13) 

+ ~ V (J- M) (J + M) Y 1-•1,, M+':, (n') Y ~-'/,, M-'1, (n) a_, h),' 0'/,), + 'Y, (J- M) Y 1-'f,, M+'f, (n') Y 1-'J,, M+'f, (n) o_,,,),, o_.,,),} 
M M 

Transforming from J, M to £ = J - % , m = M ·- % , and introducing spin matrices by 

we obtain 

L)::_:!:. 1_,1,; 1 (n', n) = (2,.. I (2! + 1)){ ~~ (l + m + 1) Y 1, m (n') v;,m (n) ( 1 + <:1z) 
m 

m m 

+ ~(l-m+ l)Yi,m(n')Y;,m(n)(1-oz)}. 
m 

The summation over m is done by using the recur:3ion formulae 

(l +m +I) Y1, m = (l + 1) Y1, m + i8Y1, mf8'f; 

Vu +m) (l +m + 1) Yl, m-1 = e'firp (i •COt 9 aYl, mla'f ±sin a val, m/ acosfi). 

We use also 

n'n =cos 6' cos 6 +sin 6' sine cos ('f'- r.p), 

and obtain finally* 

(}::_,'1~, J-'/,; 1 (n', n) = (l + 1) P 1-- ia (n'n) p'1, l = J- 1/ 2 , J =I, 2,3, ... 

A similar calculation gives 

L)f.:;~, 1+•:,, 1 (n', n) = lP1 + ia [Ill'n] P;, l = J + 1/ 2, J = 0, 1, 2, ... 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

S = 1. The matrix polynomials L 1_, 1£ • J greatly facilitate the analysis of the interaction of two 
fermions in the triplet state. Becasue of' parity-conservation, the four polynomials LJ !1 , J; J L }:~ +1 ; J 
do not appear in the expansion of R. Out of nine possible polynomials, only five have physical interest, 
three diagonal in £ 

L}'!.1. 1_1 , 1 (n',n)=-cL 11 , 1 (n',n), Lj'.\1(n',n)~L22 ,1(n',n), Lj·+J.1H;1 (n',n)=::==L:l~.J(n',n) 

and three non-diagonal 

L}~1 ,1+J:1(n', n)=::L13 1(n', n); LYi-J.1-I;1(n', n) La1,1(n', n), 

Also L31, J ( n', n) = [ L 13, J ( n, n' )]+. As in the case S = Y2, we start from Eq. (2.9). Since A.' and "A now 
take three values, we must introduce instead of ax, ay, az, the spin operators for S = 1, 

1 01 0) 1 0 -- i 0 ) 
Sx=,r-(.101 ; Sy=v--:-:(.i 0-i ; 

r 2 010 2 0 i (). 

1 0 0 ) 
Sz = (o o o . 

0 0 -1 

*In Ref. 3 [ Eq. (4.6)], Ref. 14 [ Eq. (5.16)], and Ref. 13 [ Eq. (5.12)], there are misprints in the ex
pressions for LF . Either a[n'n] should be divided by sin 6, or Pl (cos 8) should be changed to P~ (cos 8). 
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Then 
' , 1 s ( s + 1 l · , , 1 s (S ' ·s ) · ' ' 1 (S + ·s )'' · 
' 1J), 1 ov.. = 2 z "- z ' '1JiJ '1oA = V2 z X -r l y , olA, 0--IA === "i X l y -' 

'lwlliA = Jx- (Sx -- iSy) Sz; ;:;o1: 00). = 1- s;; oo).' Ln = - v\· (Sx + iS_v) Sz; (2.21) 

Lv:?'n =-} (Sx- iSy)Z; Lg• o0A = - v\- Sz (Sx- iSy); LI)i Ln =-} Sz (Sz- I). 

In addition to Eq. (2.16), (2.17), the summation over m requires four more recursion formulae, 

- · - _. . t I, m . ~ l, m V2-t 1 ( · ay ay ) VU ~ m)(l+m-I)Y 1_ 1,m:n= 21 + 1 e+''P +lsm6Y1.m+sina~+smJcos6acosa; (2.22) 

(2.23) 

Omitting the lengthy intermediate steps, we exhibit the final expressions for all five polynomials, 

L11 , 1 (n', n) = 1: 1 {(l + I) P1 + [2 (n'n) + (l + 1) (Sn) (Sn')- (l + 2) (Sn') (Sn)] P'z- (S [n'nl)2 p;t; (2.24) . 
L22, 1 (n', n) = ~~~ t !) {l (l + 1) Pz + [- 2 (n'n) + (Sn') (Sn)] P~ + (S [n'nl)2 P;};, (2.25) 

L 33, 1 (n', n) = + {-IP 1 + [2 (n'n) -l (Sn) (Sn')+ (l- 1) (Sn') (Sn)] P~- (S [n'n])2 P;}; (2.26) 

L13 1 (n', n) = y 1 {l [ ·- 2/ + (2l- 1) (Sn')2 ] Pz + [2 (n'n) 
' l(l-1) 

- (2!- 1)(n'n) (Sn')2+ (l~ I) ((Sn) (Sn')+(Sn') (Sn))l P~- (S [n'nl)2 P;}; (2.27) 

L31 ;(n',n)=Jf 1 {(l+1)[-2(1+1)+(2l+3)(Sn')2]P 1+[2(n:n) 
. (1+1)(1+2) 

+ (2! +3) (n'n) (Sn')2-(l+2) ((Sn) (Sn')+(Sn') (Sn))l P~- (S [n'nl)2 P;}. (2.28) 

Similar polynomials for S = 1 were obtained by Ritus15 using a somewhat different method. 

3. EXPANSION OF INVARIANT OPERATORS INTO MATRIX POLYNOMIALS 

The preceding formulae show that the Li,:t J have a complicated form, and it is a laborious task to 
expand an operator in these polynomials by ordinary methods. However, the requirements of rotation and 
reflection in variance restrict the possible form of an operator.· The most general invariant operator R 
is in fact* 

R = V 1 + (Sn)2V 2 + (Sn')2V a + (Sn') (Sn) V 4 + (Sn) (Sn') V 5 , (3.1) 

where Vi =Vi (n' n) are arbitrary functions of n' n. The problem of finding the expansion coefficients 
is greatly simplified by using the following identities which follow from Eq. (2.24)- (2.28), 

(2J + 1) P 1 = Ln, 1+1 + L22, 1 + Laa. 1-1; (3.2) 

, J+1 J J+1 J J+1 J L . 
(2J -t- I) (n n) P 1 = ZJ + 3 Ln. J+2 + ZJ _ 1 Ln. 1 + ZJ + 3 L22. 1+I + 27=1 L22, 1-I + ZJ +3 Laa, 1 + ZJ _ 1 33, 1-2• (3.3) 

2 J+2 J-1 Y<J+1)(J+2) Jf'J(J-1) . 
(2J + 1) (Sn) P 1 = 2J + 3 L11, 1+I + L22, 1 + 2, _ 1 Laa, 1-1 + 2J + 3 L1a. 1+1 + 2J _ 1 Lsi. 1-I• (3.4) 

I 2 J+2 J-1 JfJ(J-1) V(J+1)(J+2) . 
(2J + 1) (Sn) P 1 = ZJ + 3 Ln. 1+I + L22. J + ~ Laa, 1-1 + ZJ _ 1 L1a, 1-I + ZJ + 3 Lai, 1+1> (3,5) 

' J+1 J-1 J+2 
(2J + 1) (Sn )(Sn) P 1= ZJ + 1 Ln. 1 + ZJ _ 1 L2i, J-1 + 'L.J + 3 L22. 1+I 

J JfJ(J+1> YJ(J+1) . (36) + ZJ + 1 Laa, 1 + ZJ + 1 LI3, 1 + ZJ + 1 Lai, 1 , ' 

*The invariant combination iS[n'n] is contained in the fourth and fifth terms by iS[n'n] = (Sn') (Sn) 
- (Sn) (Sn'), and (S'[n'n])2 is contained in all five by (S[n'n])2 = 2[ 1- (n'n)2]- (Sn)2 - (Sn')2 + 
(n'n) [(Sn)(Sn') + (Sn')(Sn)]. 
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' J+1 . 2J J 
(2J +I) (Sn) (Sn ) P 1 = 2J + 3 Ln. 1+2 + (ZJ + 1) (ZJ -i) Ln. 1 + ZJ _ 1 L?12, I-1 

J+1 2(J+1) J VJ<J+1) VJ(J+1> + 2J + 3 L22, I+I- (2J +1) (2J + 3) Laa, J + 2J --1 Laa, J-2 + 2J + 1 Lia. J + 2J + 1 Lal, 1· (3. 7) 

Sometimes we encounter operators which contain not only the P£ but also their derivatives P.Q_ and P£. 
Terms containing P£ and P£ can be expressed as simple combinations of matrix polynomials Ll~t J 
similar to Eq. (3.2) -(3. 7), but for reasons of space we do not here go into the details. 

4. DETERMINATION OF PHASE SlfilrTS FROM THE SCATTERING MATRIX 

The S-matrix is as a rule calculated using quantum field theory, in which for a variety of reasons it 
is convenient to work in the p-representation. Thus the scattering matrix is first obtained as an operator 
depending on the initial and final moment p and p' and on the parameters ll., ~, ll.', e. To find the phases 
we transform to the J, M, s, £, p, ~-representation, 

(A', ~'; p' IS I p; ~. A)= ~ ~ ~<A', ~'; p' I Jz, M2, S2, l2, Pz, ~2) 
l:aMasz[z ltMLslll 

X p;dp2 <~2 , pz; l2, Sz, M2, J2l S I J1, M1, S1, l1; PI• ~1> P~ dpl <~1, P1; l1, S1, M1, l1l p; ~. A), 

with the transformation-functions 

(A., ~; n, piJ, M, s, !, p', n ='(A, niJ, M, s, /) <~, pip', ~'), 

(1., n I J, M, s, /) = g):M (n, ),), 

<~.PIP', ~'>=(1/p)o(p-p')a~,~ 

normalized by the conditions 

~ (A', n' I J, M, s, /) (J, M, s, ll n,A) = a,n.o (n'- n), 
JMsl 

~ ~ (/', s' '. M'' J' In, A) dn (A, 11 I J, M, s, /) = OJ]' aMM' Oss' all'• 
A 

~ ~ <~', p' I PI> ~1> p~dpl <~1• P1l p, ~>=a~,~ a (p'- p). 
~. 

If we compare the expansion of the S-matrix in matrix polynomials L£~· £~ J ( n', ll.'; n, ll.) 

<'' t'· 'IS i • E ') ~ ~ s's ( ' "'· 1:) Ls's (n' A'· A) "'", P ;P, ·•" = £..JL.Jrx.Z',i~;J P, ', p, · l',l:J ' , n, 
s's l'l 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4. 7) 

(4.8) 

s', s with the expansion (4.1), we see that the expansion coefficients a£',£; J are related to the J, M, s, £, p, 
~ -representation of the S-matrix by 

4'1!:oNaM'Mp'prx.f;~l; 1 (p', ~'; p, ~) = (~', p'; J', M', s', l'J S ll, s, M, J; p, ~) 

or 

(4.9) 

(4.10) 

To introduce the phase-shifts, we use two fundamental properties of the S-matrix; it must be unitary 
and symmetric. The first property follows from the normalization to unity of the flux of incident and scat
tered particles, or from the conservation of the number of particles. The second property follows from 
the time-reversibility of the theory, which is connected with the principle of detailed balance. Since the 
S-matrix is unitary, it can always be written in the form 

S = exp (2iQ), (4.11) 

where Q is a hermitian phase-matrix. Then, since Q is hermitian, it can be reduced by a unitary trans
formation U to a diagonal matrix Q0 with N real diagonal elements* 

(4.12 

*Here N is the number of different sets of s, £, ~. corresponding to a given value of J. 
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But S is symmetric, i.e. s+ = S*, and therefore Q and U are real. The orthogonality of U imposes 
% N ( N + 1) additional conditions, so that only % N ( N + 1) out of the original 2N2 real parameters are 
independent. Of these, %N (N- 1) are still to some extent arbitrary, since they are connected with the 
matrix U and depend on the choice of representation. Only the N diagonal elements, which are the 
actual phase shifts, express essential properties of the interaction. Thus the problem of calculating phase
shifts reduces to the diagonalization of the matrix a, and the elements of the diagonalized matrix a' are 
related to the phases by 

(4.13) 

or by 
(4.14) 

I 

We often deal not with the S-matrix itself but with R = S - 1. If we denote by a~,'ts,. J the coefficients in 
s', s the expansion of R into polynomials LR.',R.; J, then we have instead of Eq. (4.13), (4.14), 

(4.15) 

(4.16) 

Eq. (4.14) and (4.16) do not quite solve the problem, because they are obtained by assuming the exact 
unitarity of the S-matrix, which ensures the compatibility of the real equations which follow from the com
plex equations (4.13) and (4.15). But in practice the S-matrix is often given as a finite sum which is uni
tary only up to the order of the last term included in the sum. Then it can happen, for example, that the 
equations 

2rrp' p Im a(hJ = sin ok cos ok 

(4.17) 

(4.18) 

are incompatible, and Eqs. (4.14) and ( 4.16) may then introduce errors which of lower order than the terms 
neglected in the S-matrix. We now derive a general expression for the phase-shift which preserves the 
order of accuracy with which the S-matrix is given. The S-matrix can be written in the form 

S = 1 + 2J gnCn; (4.19) 
n---=1 

(4.20) 

I 

The coefficients in the expansion of R into polynomials L1~. l_~ J are then 

ai::z~ J = 2J gnbr: f; J (n). (4.21) 
n-1 

After diagonalization with respect to s and R., Eq. (4.17) and (4.18) give* 

2rrp2~ gn Reb (n) =- sin2 o; (4.22) 
n~1 

2rrp2 2J gn Im b (n) =sino coso, (4.23) 
n~1 

hence 

co 2 co 2 1 /2 00 1fa 

JsinoJ=2~:p2 [(~gnReb(n)) +(2Jgnimb(n))} =2rrp2 [~ gnfn], (4.24) 
n=l n=I n=2 

where 
m-1 

f2m = 2 ~(Reb (k) Reb (2m- k) + Im b (k) Im b (2m- k))+ [Reb (m)]2 + [lm b (m)]2, 

l-1 

*Without loss of generality we put p' = p. 
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m 

f2m+1 = 2 L (Reb (k) Reb (2m+ I- k) + Im b (k) Im b (2m+ I - k)). 
1<-1 

The sign of o, as we see from Eq. (4.23), is given by the imaginary part of the first non-vanishing 
term b ( n0) in the series ( 4. 21) • 

5. CALCULATION OF PHASE-SHIFTS FOR NUCLEON-ANTINUCLEON SCATTERING 

In Sec. 4 we showed how to deduce the phase-shifts from the scattering matrix for systems of particles 
of arbitrary spin. As an example we consider nucleon-antinucleon scattering. 

We take the S-matrix given by the covariant formulation of perturbation theory ,16 

(5.1) 

The units are chosen so that h = c = 1. For pseudoscalar meson theory with pseudoscalar charge-sym
metric interaction, 

H (x) = gN (il (x) j 5't1<p 1 (x)'f (x)). (5.2} 

Here tf;(x) and cpi(x}, (i = 1, 2, 3} are operators of the free nucleon and meson fields, Ti are nucleon 
isotopic spin operators, ,S = ·yiy2yy4, (y5}+ = -y5, and N denotes a normal product. Transition matrix 
elements can be written down by the usual rules.' In the lowest non-vanishing approximation we have 

S(2) = - .!..ft_ (-r; lp.p., (-r; lv,vM2 u, (p) ys u,, (Po) ·vp, (qo) ys vP (q) o ( + - p - q ) o (£ + E - E - E ); (5.3} 
lf-l (2r.)2 (£ E E E )'lz (P-Po)'-(£ -E )2+[1.2 p q o o P q Po q, 

p q Po q, P Po 

S(2) = ig2 (-rtlp.v(-r;)v,p.,M2 u,(p)y'vp(q)·vp,(qo)y'u,,(Po) o( + - - )o(£ +E -E -E) (54 
2/+-1 (2r.)2 (£ E E E )'I• (Po+ q0)2 _ (E + E )2' + [1.• P q Po qo P q p, q, ' • 

P q Po q, Po q, 

where p0 (q0 ) and p(q} are the initial and final momenta of the nucleon (antinucleon), u0 (p0) and u(p} 
are the spin indices of nucleon (antinucleon) in initial and final states, P.o ( v0) and p. ( v} are the isotopic 
spin indices of nucleon (antinucleon), M and p. are1 the nucleon and meson masses, and u and v are 
bispinors of the form 

:~·:==.:s===:·==.=: a 

u (p) =(2M (Ep + M))-'1• ( EPP: M ) ; 

The Feynman diagrams corre,sponding to S1f -i and S2f-i are shown in Figs. a 
and b. 

Passing to the center-of-mass system, we have* 

o (p + q- Po- qo) = o (p + q) o (Po + qo); 

o(Ep + Eq- Ep,- Eq,} = o (2Ep- 2Ep,) = (E0 j2po) o (p- p0 ), 

Expanding the bilinear combinations of u and v with q0 = -p0 = -nop0 and 
q = -p = -np, we obtain 

Si~~f+-i = R1,2 8 (p + q) o (Po+ qo) o (p- Po); (5.5} 

ig2 Po ((n- n0 ) 11)00, ((n - n0 ) a)PoP • 
R1 =- 32r.2 (-r:i)IJ.IJ.o (-r:;}v,v £o p~ (n _ n0)2 + [1.2 ' (5.6) 

(5. 7} 

It is convenient to express these quantities in terms of the outer products Ti x 7k = Tti T2k and <Ti x Ok = 
<11i <12k. This is done by means of 

*Hereinafter we write E 0 for Ep0 • 

(-r:i)p.v (-r:;)v,p., == 1/2 (3- 't1't2 + 2-clY 't2y); 

(aa) (aa) == (a,a)(a2a -2~2yay); aa0 P0 P 

(5.8} 

(5.9} 

(5.10) 
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(5.11} 

The matrices R1 and R2 in this representation are formally not invariant* under rotations either in or
dinary space or in isotopic space. To obtain R1 and R2 in manifestly invariant form, we must transform 
to a new representation R 1 = U R u+ with U = T 2y a2y . Dropping the primes, we obtain in the new repre
sentation 

R __ _!L ('t 't )~ (a, (n- no\)(a, (n- n0)) • 

1 - 321t' 1 2 E 2 ( _ )2 + 2 • 
Po Po n "o fl. (5.12} 

(5.13} 

The transition to a representation using the total spin S = % ( a1 + a2 } and T = % ( T 1 + r 2} is simplified 
by using the relations 

(5.14} 

The result is then 

R = ~ T2 (2- ~ I !& 
2 87t• - 4E~ +fl.' Po • 

(5.15} 

Equation (5.15} implies that, for S = 1 or for T = 0, the annihilation term vanishes in this approximation, 
and the scattering is given by the exchange term alone. 

We consider the case of triplet scattering ( S = 1} and expand the matrix R1 in polynomials q,: ~; J 
x(n,n0}. First we must expand 1/[n- no)2 + c2] in Legendre polynomials 

EPo 2 
1 = ~ AI (Po) P 1 (nno), 

o p0 (n-n0 ) 2+(J-2 ~ 
1-0 

(5.16} 

Next, using Eqs. (3.2) - (3. 7) of Ref. 1, we obtain 

ig2 2 3 ~ A 1 (P0) { 1 L 1 L . i + 2 L L i- 1 L 1 L 
Rl = 167':2 (2T - ) ~ 2j + 1 - 2j + 3 11. /+1 + 2j + 1 11. I + 2j + 3 22, l+l- 22, I + 2j -1 22, i-1- 2j + 1 33, I 

I (5.17) 
1 V(i+1)(i+2) YiU+1) Vj(j-1) } + 2i _ 1 L33,1-1- 2i + 3 (L1s, 1+1 + La1, /+1) + 2 2i + 1 (L1s. 1 + La1, J)- Zj _ 1 (L1a, 1-1 + Lal. i-1) · 

With a change in the summation variable, this expansion takes the form 

R1 = :::. (2P- 3) ~ {a)1lLu, J + a)2l L22.J +a~> L33, J +a, (L1a, J + L1a. ,)}. 
J~O 

(1) 1 A ) 1 A ( ) 1 (2) J A ( J + 1 A ( ) (2J + I) a, '""' ZJ + 1 J (Po - ZJ _ 1 J-1 Po • (2J + ) a, = 2J + g J+1 Po} - A, (p0) + ZJ _ 1 J-1 Po , (5.18) 

,(2J + I) aSs>= 21~ 3 AJ+dPo)- 2J~i A, (Po), (2J + 1) a,=V J (J + 1) (- 2J ~ 3A,+dPo) + 2J ~ 1 A, (Po)- 2J ~ 1 A,_I(po)). 

In the case of singlet scattering ( S = 0} the matrices R1 and R2 become 

R1 = ig' (2P - 3) ~ 1- (nno) ' 
i61t2 Eo p~ (n- n 0)2+fL" 

ig2 T 2 Eo R2 = 4_... -
" - 4E~ + fl- 2 Po · 

(5.19) 

Expanding R1 and R2 jnto polynomials L~~~; l ( n, no) which are simply multiples of Legendre polynom-
ials1 

LY;? z; z= L~ (n, n0} = (2! + 1) Pz (nn0), (5.20) 

we find 

(5.21) 

*This does not mean that there is any failure of spin-conservation, since in this representation Sx = 

%<atx- a2x>• Sy = %(a1y + azy). 82 = %<a1z - 0'2z), and similarly Tx = %<rtx- T2X), Ty = %<r1y + 
Tzy ) , T z = 1/2 ( T 1Z - T2z) • 
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ig2 T2 E0 Lo ( 
R.2 = 4rr2 2 2 -- 0 n, no). 

-4£0 +fl. Po 

where ( 2~ + 1) b~ (Po) = B~ (Po) is a coefficient in the expansion of 

Po ( 1 - (nno)) /Eo [p~ (n - n0) 2 + 112] 

(5.22) 

in Legendre polynomials. , 
We saw in Sec. 4 that the phase shifts are in general to be found by diagonalizing the matrix a;,: J 

which is formed from the coefficients in the expansion of the operator R = S - 1 in matrix polynomials 
L::~~ J. The elements a~ of the diagonalized matrix are related to the phase-shifts <'5k by 

- 2r.ip~a~ (Po) = eia" sin a". 
Consider the case of triplet scattering. When J = o .. only one polynomial Lh, 0 is different from zero. 
Thus, except for 

- <a) ( A 1 ) ig• • A ( ) 1 I ( 4p~ ) aaa = ao = - o (Po) + -3- Al (Po) 16rr• (2T-- 3), o Po = 4poEo n 1 + (1:2 , (5.23) 

3 { 1 ( [1.2 ) ( 4p~ ) } AI(po) = 2PoEo 2 I+ 2P~ ln I+ [1:2, -1, (5.24) 

all elements of the matrix ~ are zero. The single phase-shift, corresponding to the transition 3P 0 -
3P 0 , is given by 

(5.25) 

Compare Eq. (4.24) of Ref. 1. The phases for transitions with J 2:: 1 are found similarly. 
In conclusion I express my deep gratitude to Academician I. E. Tamm for his valuable criticisms. 
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