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Irreducible relativistic wave equations different from the Dirac equations are derived for spin 
% particles. The particles described by these equations may have one or more proper masses 
and the corresponding fields have a positive definite charge density. The existence of such 
equations is not incompatible with the well known proof of uniqueness of the Dirac equations. 

ATTEMPTS to construct wave equations of the type 

(W'o~z- ix) '!' = 0 (1) 

but different from the Dirac equations have been unsuccessful. The only exception is the set of equations 
due to Petras. 1 But these equations are not investigated in details in his paper, and it is therefore not 
clear whether they meet all of the physical requirements. 

The known proofs by Wild2 and by Gel' fand and lag 1om3 on the uniqueness of the Dirac equations seemed 
to imply that anomalous equations for spin % particles do not exist, and that the equations of Petras 1 are 
physically unacceptable. 

The proofs of the uniqueness of the Dirac equation are, however, not general. They rely on the assump
tion that the equation for spin %particles can be derived only with the representation of the total Lorentz 
group for the maximum value of spin%. 

In this paper we start from the representation of DR for the maximum value of spin % and we show 
that there exist anomalous equations for spin % particles, the simplest of them being the Petras equations. 

1. RELATIVISTIC FORM OF ANOMALOUS WAVE EQUATIONS 

If the equations (1) are covariant, the matrices {3k have to satisfy the known relationships 

[~hflm] = gld~m- gkm~l; 

[hllmn] =- ghmlln + gzmhn + gknllm- gznhm; 

~iz = z~i, 

where lid represent infinitesimal rotations and Z is the matrix of space reflection. 

(2a) 

(2b) 

(2c) 

If the representation of the total Lorentz group DR is known, Eqs. (2) can be used to find the form of 
the matrix f3o. The remaining matrices f3v ( v = 1, 2, 3) can be determined from (2a). 

It is known that there are three non-equivalent irreducible representations of the operators lid and 
Z for the maximum value of spin%, with 12, 8 and 4 rows respectively, which we shall denote by T3 , 

T2 and T 1 • 
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In order to construct the matrix {30 , we can use the general representation of the elements Ik£ and Z 

he =all~·> + blk~·> +ell~·>; Z = az'-r,J + bZ(-r,J + cz(-r,J, 

where a, b and c determine the number of irreducible representations of the same kind. However, in 
the following discussion, we will restrict ourselves to cases with a = 1, b = 0, c = 1, 2, 3 ••• ; these 
cases are the simplest because the existing field has then a positive definite charge density; in the gen
eral case the matrices f3k are either irreducible or not equal to the Dirac matrices. 

We will denote the matrix {30 constructed with these representations by 

~o = ,~o ('ta, C't1). 

It has been shown4 that the matrix {30 can be written as a direct product of two matrices 

~o = "[o XOI: ('ta, C't1), 

where Yo is a Dirac matrix. The same reference shows the form of the matrix a (a = Ua 0u+, a 0 is 
a matrix from Ref. 4) to be 

2[ 
2l 
-l R. 

SK 

(3) 

R is a row matrix with elements rl-" fJ. = 1, 2, ,, •• , c; S is a column matrix with elements sf.J., fJ. = 

1, 2, ••• ' c. 
Some of the coefficients of the matrix a can be assumed equal to zero. 
If we set 

l=O; k"".=O, 1-'=f=v; k"""" =k14 =f=O; k""=f=+k., 1-'=f=v; r"""f=O; s""=f=O, 

it is easy to verify that the matrices f3k remain irreducible and that the matrix a will have the simple 
form 0 

0 

0 '1 '2 .•. fc 

01: := 01: ('t~, C'tl) = sl kl 

s2 k2 

Sc 

This matrix has in general c + 1 different eigenvalues 'Af.J. (f.J. = 1, 2, ••• , c) different from zero 
For each eigenvalue 'Af.J. there are four independent solutions of the wave equation (1); these solutions 

correspond to the two signs of the energy ± E and to the two directions of spin ± % • The corresponding 
wave equations describe therefore a spin %particle which has, in the general case, c + 1 different mass 
values. 

It follows that, in principle, there can exist spin % relativistic wave equations which differ from the 
Dirac equation. We shall call them anomalous because the spin% state never occurs although we start 
from the representation of ~ for the maximum value of spin %. The spin % state is excluded by the 
condition 1 = 0. 

It is easy to find the anomalous wave equations lln explicit form. We have in the spin-tensor form 

c 

- ~ r"" (2CJhx(""l + 'l't'l'kCJ1x(""l) = xBk, 1/ 2s""okBh- ik"" lokx(""J = xx(""), 
IJ.-1 

(4) 

where x<f.J.) is the Dirac spinor, Bk is a spin-vector introduced by Rarita and Schwinger,5 and yk are 
the usual Dirac matrices. 

2. ANOMALOUS EQUATIONS FOR SPIN 1/2 PARTICLES WITH A SINGLE 
MASS EIGENVALUE 

In the general case, i.e., for arbitrary values of the coefficients rw sf.J. and ~· the charge density 
of the field described by Eq. (4) is not positive definite. However, one can choose the. relations between 
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the coefficients of the matrix a such as to make the charge density positive definite. 
The problem is treated best in the rest system of the particle. If Eq. (1) is solved in this system, letting 

ao--? iE = ixjA., 

the following equation for the amplitude cp is obtained 

(5) 

The charge density is determined from the expression 

(6) 

where the matrix A has to satisfy the condition 

The matrix A can be expressed as a direct product of the Dirac matrix y0 and the matrix 7'/ = diag Ill, 
1, l,E 1, E2, ••• Ec II, (Ep, = ±1); 

A =1o'YJ· 

Substituting the direct products (3) and (7) into (5) and (6), we get . 
(oc.-A)'f'l.3 = 0, (or.+ A.)'f'2,4 = 0; 

4 

p = ~ 'f';!-'flOC.q.>,, 
r=l 

(7) 

(5') 

(6') 

where cpr are the components of cp. The charge density will obviously be positive definite if we can show 
that one of the terms of the sum (6'), e.g., the term 'Pl+T'/a(/)1, is positive. The condition p > 0 can there
fore be replaced by the condition 

(8) 

in which the amplitude 'Pi has five components cpp.o 
The case a = a ( r 3, Tt), i.e., c = 1, does not yield a relationship between the coefficients of the 

matrix a such that the relationship (8) be satisfied. We therefore turn to the case a =a ( r 3, 2rt) i.e., 
c = 2. 

If 
r~ = s1kik2/(k1-k2), r~ = s2k~(-k1)/(k1 -k2), k1>k2, s1 = s1r1, s2 = s2r2, 

the matrix a will have a single eigenvalue A different from zero: A = k1 + k2• This means that the 
particle will have a single mass m = K/ I A I, or m = K if we choose I~ I = 1. 

If all the dependent components are excluded from (8), we get 

), U-~ /k1k2) <~~: Y3 

(9) 

which will obviously be positive definite if A > 0, k2 > 0 or A < 0, k1 > 0 > k2 • In the first case we have 
E1 = -E2 = 1; in the other case E1 = € 2 = -1. In both cases the matrix {30 is not Hermitian and it cannot 
be diagonalized because it has a multiple zero value. It is easy to show that a similarity transformation 
which would transform the case € 1 = -E2 into the case E 1 = € 2 does not exist; it can be shown that all 
the other cases can be obtained through a similarity transformation. 

The corresponding matrix {30 , which has 20 rows, satisfies the equation 

~~ (~~ - I) = 0. 

All the coefficients of a cannot be determined by the conditions (9) and the mass of the particle. One 
of the coefficients is independent and the wave function contains therefore a free parameter. 

3. ANOMALOUS EQUATIONS FOR SPIN 1/2 PARTICLES WITH SEVERAL 
MASS EIGENVALUES 

Let us consider the case a = a ( T3 , CT 1 ) with c = 3. We see that the coefficients of the matrix can 
be chosen in three independent ways such that the particle has two different masses m 1 = tel I A11, m2 = 
K/IA21 and that the corresponding field has a positive definite charge density (i.e., the charge density has 
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the same spin for both mass states, and is positive). 
We will show the relationships which have to be satisfied by the coefficients of the matrix a in only 

one of the possible cases: 

ri = ki (k1 -).I) (ki- '-2) I (ka- ki) (ki- k2), r~ = - k~ (k2- ).I) (k2- '-2) I (ki- k2) (k2- ka), 

r~ = k; (ka- ).I) (ka- A2) I (ka- ki) (k2- ka), si = r1, S2 = - r2, Sa= ra, (10) 

EI = - E2 = sa = 1, ),1 > ki > k2 > ka > A2, '-2 < ),II2, AI + ).2 = k1 + k2 + ka. 

This case is interesting because the masses of the particles are not independent-in the remaining two 
cases a similar restriction does not exist. 

As it can be seen from Eq. ( 10), the wave equation will contain two free parameters. 
The number of possible choices of the coefficients of the matrix increasing with the increase of c, 

there exist, for each matrix 0! = 0! ( r 3 , cr1), c ~ 1, physically acceptable anomalous equations. In gen
eral, they describe spin % particles with c - 1 different masses. 

CONCLUSION 

The anomalous wave equations for spin% partieles can be generated from the Lagrange function be
cause for each case there is a matrix A (7). The electromagnetic interaction can be introduced in the 
anomalous equations the usual way, i.e., by makin!~ the substitution 

without destroying their simultaneity. An obvious proof for the case c = 2 has been given in Ref. 1. 
Similarly, the introduction of other kinds of interaetions does not present any difficulty; indeed the 
Lagrangian of the interaction contains, for a given kind of coupling (e.g., pseudoscalar), several inde
pendent invariants; we have therefore at our disposal several coupling constants and we can find some 
relationships between them such that the number of additional (initial) conditions contained in the system 
(4) is conserved when the interaction is introduced. 
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