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The so-called "fluctuation-dissipation" theorem of Callen and his coworkers is used to develop 
a spectral theory of thermal fluctuations in an isotropic visco-elastic continuous medium. The 
mechanical and thermal parameters of the medium in this case can possess any frequency dis­
persion consistent with the dissipation condition. Correlation functions of wk-amplitudes (am­
plitudes in Fourier time-space expansions), have been found for stress, deformation, velocity, 
temperature, and entropy fluctuations. With the help of these functions, the spectral intensities 
(giving the spatial correlation at a frequency w) and also the spatial correlation functions of 
quantities which are not decomposed spectrally have been calculated, The results are of inter­
est in the spectral theory of Rayleigh light scattering. 

1. INTRODUCTION 

THE problem of the !'3pectral description of thermal fluctuations of quantities which characterize dissipa­
tive systems, has undergone an important development in recent years. The introduction of certain fluc­
tuating "external" forees, connected with the quantities under consideration in the same energy sense as 
in the connection between generalized coordinates and forces, has proved to be an extraordinarily effec­
tive means for the solution of this problem. The action of a "thermostat" on this system is replaced by 
the action of these random "external" forces, whose statistical properties are such that they produce just 
those fluctuations which are actually observed in the real system. In this case, inasmuch as the basic 
problem is the reproduction of the spectrum of the fluctuations, the necessary statistical characteristics 
of the "external" forces are reduced to their correlation functions. 

The first such problem was solved in 1927 by Nyquist1 and was applied to the current fluctuations in an 
electric circuit with lumped constants. Nyquist introduced a random external emf d)(t) which produces 
thermal current fluctuations I (t) in the circuit- a procedure which also appears in the researches of 
Langevin2 and De Haas-Lorentz3 on the theory of Brownian motion. In contrast to those authors, however, 
Nyquist transformed to the spectral representation of these random functions and, on the basis of thermo-

dynamics and the equipartition theorem, obtained the spectral intensity of the emf, cf5 ~ • 
Much later ( 1951-1952 ), the Nyquist theorem was greatly generalized by Callen and his coworkers.4 

They extended the whole approach to the case of an arbitrary dissipative system, the state of which is de­
scribed by some number n of discrete parameters ~ j ( t). Corresponding to this, they introduced n gen-

eralized "external" forces fj (t) and established the form of the correlation matrix fjw f~w. The deri­
vation of this so-called "fluctuation-dissipation" theorem was given in the papers referred to, both on the 
basis of classical statistical thermodynamics, and on the basis of quantum theory. By these means it was 
demonstrated that the correlation functions are proportional to the mean energy of the oscillator E( w, T ). 
Second, what determines the correlation matrix of the "external" forces (this is the impedance matrix of 
the system under consideration) is the natural extension of the concept of impedance to an arbitrary dis­
sipative system.* 

*It should be noted that in 1941 Leontovich5 had come very close to the formulation of this general theo­
rem, but he did not carry his derivation to the explicit expression of the correlation functions in terms of 
the impedance matrix. In the text of L. D. Landau and E. M. Lifshitz on macroscopic electrodynamics 
(which will appear shortly), the derivation of the theorem of Callen and his coworkers is given a more 
complete systematic-spectral form. 
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Sometimes we are not interested in lumped systems, described by the ordinary differential equations 
for the set of functions ~j (t ), but in distributed (in the general case, three dimensional) systems, the 
fluctuations in which are described by a set of random fields ~ j (t, r) which satisfy partial differential 
equations. For example, we may be dealing with the fluctuations of an electromagnetic field (here, we can 
also include thermal radiation), or with fluctuations of mechanical and thermal parameters which charac­
terize the state of a continuous medium. 

The problem of the spectral description of thermal fluctuations, as applicable to the electromagnetic 
field, was solved in 1952- first, for a quasi-stationary region (by Leontovich and the author8 ), and then 
for the general case of a system of Maxwell's equations. 1 The Nyquist theorem served as the starting point 
of these researches, so that the introduction of "external" electromagnetic fields and the establishment of 
the form of the correlation function for its spectral amplitudes was carried out on the basis of a series of 
physical considerations, and not formulated by any regular method. Nonetheless, these basic elements 
were found to be valid. They allowed one to erect a consistent theory of thermal electric fluctuations 8 

which includes as limiting cases the classical theory of thermal radiation (the approximation of geometric 
optics) and the theory of Nyquist (quasi-stationary region). Subsequently, this general theory was com­
pleted and extended in several directions by Levin9 and Bunkin,to and was also applied to a series of more 
specialized problems, 11 among which was the construction of a macroscopic theory of molecular forces of 
cohesion (E. M. Lifshitz12 ). 

Landau and Lifshitz (in the textbook of macroscopic electrodynamics cited above) have demonstrated 
that the results of Callen and his collaborators could be applied in a regular fashion to distributed systems. 
They made use of the division of a continuous system into small volumes and, correspondingly, of the sub­
stitution of difference spatial operators for differential ones. Applying this method to the Maxwell equa­
tions, they derived those correlation functions for the "external" electromagnetic fields, which were in 
fact guessed in Refs. 8 and 10. 

Starting out from the work of Landau and Lifshitz just cited, I modified the application of the "fluctua­
tion-dissipation" theorem for distributed systems (making use of the expansion of random fields in some 
complete set of functions) and obtained formulas13 which are used below for the construction of the spec­
tral theory of thermal fluctuations in a viscoelastic continuous medium. 

Application of the "fluctuation-dissipation" theorem to the linearized equations of the theory of elastic­
ity permits us to give a complete spectral description of the thermal fluctuations in the continuous medium 
for very general assumptions on the frequency dispersion parameters of this medium.* An arbitrary de­
pendence is possible, compatible with the condition that the medium be a dissipative system. The theory 
developed below, which does not specify the mechanism of the dispersion, is purely phenomenological. 
Among the problems for which the results flowing therefrom are of interest and of direct application, we 
can name first of all the spectral theory of Rayleigh light scattering, an account of which I hope to give in 
a separate paper. 

1. INITIAL EQUATIONS 

We limit ourselves to the case of an isotropic medium, the mechanical properties of which can be char­
acterized by two elastic moduli, while the thermal properties are characterized by the scalar coefficients 
of thermal conductivity and thermal expansion (in addition to the heat capacity). 

All these parameters of the medium being functions of the frequency w (or, more precisely, of z=iw) 
are, generally speaking, complex. 

Thus, for example, the elastic moduli, for which we may take the bulk modulus K and the shear mod­
ulus ji, have the form 

(1.1) 

where K and p. are the ordinary bulk and shear moduli, and ~ and 1J are the volume and shear viscos­
ities. The medium can be either a solid (amorphous ) body, for which p. f. 0 at w = 0, or a liquid [ p. ( 0) 
= 0 ]. Since, in the presence of dispersion, the shear modulus cannot be set identically equal to zero, we 
must even in the case of a liquid start out, not from the hydrodynamic equations, but from the general 

*Much earlier, E. M. Lifshitz drew my attention to the analogous theory developed by him and Landau 
for the case of a viscous liquid in the absence of dispersion (by the method set forth in Ref. 14, Sees. 117-
120; see Ref. 20 ). 
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equations of the theory of elasticity. The presence in liquids at high frequencies of fluctuating deforma­
tions of this same type as in solids brings about an added optical anisotropy and therefore is important 
for the so-called "wing" in the theory of Rayleigh light scattering.5 

Deviations from thermodynamic equation of state of the medium under consideration, along with the 
random fields of such quantities, as well as the displacement s and the velocity v of the particles of the 
medium, the deformation tensor Uaf3, the stress tensor a a{3, the temperature T and the specific (per 
unit mass) entropy S can all be described (under known limitations, see Ref. 14. Sees. 117 and 118) by 
certain parameters ~.i• the number of which it is not necessary to limit and which characterize all pos­
sible internal processes. 

For thermal fluctuations in a medium which is thermostated, the random fields of all these quantities 
(understood as fluctuating deviations from the corresponding equilibrium values 

s0 = 0, v0 = 0, Uar:o = 0, a~~= 0, T 0 , So, ~io = 0, 

are statistically stationary in time and homogeneous and isotropic in space. These small deviations sat­
isfy a system of linear differential equations which consists of the linearized equations of the dynamical 
theory of elasticity, the linearized equation of heat transfer, and the kinetic equations for the parameters 
~j· We assume that these latter equations are purely temporal; consequently, for the transition to the 
spectral description ( d/dt - iw ), they are converted into the linear algebraic equations with complex co­
efficients. With their help, eliminating all the parameters ~j• we retain for the description of the behav­
ior of the medium only the mechanical and thermal quantities mentioned above. As a result, we get for 
the spectral amplitudes of these quantities, the usual equations of elasticity theory and heat transport 
theory, but with the coefficients depending on z = iw. Thus the dispersion of these coefficients expresses 
in terms of the phenomenological theory all the internal kinetics of the medium under consideration.* 

For the fields Uaf3, aaf3, tl- = T /T0, and S, we have, consequently, the linearized equations of mo­
tion:t 

a"~ = 2P: u:~ + K (u- C-&) Oa~· 

Ua~ = 112 (asa I ax~+ as~ I axa). 

u=uaa = divs, 

and the linearized heat-transfer equation 

( 1.2) 

( 1.3) 

( 1.4) 

( 1.5) 

( 1.6) 

(1.7) 

In addition to the elastic moduli K and ji, these equations also contain the (spectral) coefficient of 
thermal conductivity K and the coefficient C which determines the dependence of the deformation on the 
temperature. The deformation tensor uaf3 divides into: ( 1) the trace u • Uaa• which is equal, with op­
posite sign, to the relative compression, and ( 2) the deformation of pure shear u~/3, the trace of which 
vanishes. Such a division is especially convenient in the theory of light scattering. 

*The considerations set forth are only the continuation of those which were introduced by Leontovich15 

and developed by the researches of him and L. I. Mandel'shtam,16•17 which touched on the relaxation mech­
anism of the dispersion and absorption of sound waves in liquids. In Ref. 17, in addition to the linearity of 
the equation for ~j and the condition that ~j # const. only for deviations from thermodynamic equilibrium, 
an inertia-free (relaxational) character is assumed for the change of each of the ~j· This latter condi­
tion, according to which the differential equations for the separated variables ~ j have a first order, is 
not generally obligatory. The most general requirement of the dissipativity of the system is sufficient. 
On the other hand, the assumption that the equation for ~j does not contain spatial derivatives of the 
mechanical and thermal quantities is essential, since only under these conditions can the equations for the 
spectral amplitudes Uaf3·• aa{3• T, S be represented in the usual form under the allowance of only fre­
quency dispersion of the parameters of the system. 

tin order not to encumber the formulas we shall not use the index w to indicate that all the equations 
are written for the spectral amplitudes at the frequency w (v w and so forth). 
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Since the number of variables in the system just described is greater by one than the number of equa­
tions, it is necessary to introduce an additional relation which, naturally, ought to be linear. We write it 
in the form 

( 1.8) 

taking here as the coefficient for a the same C as enters into Eq. ( 1.4). This is dictated by the condi­
tion of symmetry of the spectral kinetic coefficients (see below, Sec. 3 ). 

If dispersion is absent, i.e., if K, Jj, C and D do not depend on frequency (and consequently are real), 
then all the given equations are valid for spectrally non-decomposed quantities and the laws of thermody­
namics become applicable, i.e., the state of the system is uniquely defined by six "mechanical" and one 
"thermal" variables, for example, a 0'{3 and it. From the group of equations ( 1.4 ), and from ( 1.8 ), it fol­
lows that in this case the coefficients have the following thermodynamic meaning: 

( 1.9) 

where f3T is the isothermal compressibility, 0' is the coefficient of thermal expansion, and Cp is the 
heat capacity at constant pressure. 

Making use of the well known thermodynamic relations 

r:t..2T0 =p0cp(~r-~s), Cp/Cv=~r/~s=j, 

where f3s is the adiabatic compressibility and cv is the heat capacity at constant volume, it is easy to 
obtain the value of one combination of parameters which enters into what follows, namely: 

( 1.10) 

2. GENERAL FORMULAS FOR THE CORRELATION AND SPECTRAL INTENSITY FUNCTIONS 

Let ~ (t, r) be the random field of any of the quantities considered (scalar quantities or components 
of a vector or tensor) and let ~w (r) be the corresponding spectral amplitude: 

+oo 
qt, r) = ~ ~"' (r)ei"' 1 dw. ( 2.1) 

-oo 

In turn, we can represent (as is frequently convenient) ~w (r) in the form of a three-dimensional 
Fourier integral 

+co 
~"' (r) = ~ ~wkeikr dk, ( 2.2) 

-co 

so that 

+oo 

qt, r) = ~~~wkei(wt+kr)dwdk. (2.3) 
-oo 

As a consequence of the statistical stationarity of these fields in time and their spatial homogeneity, the 
correlation functions of the wk-amplitudes of any two quantities ~(t, r) and 11 (t, r) (in particular, 11 
= ~ ) have the form 

(2.4) 

In view of the isotropy of the fluctuations, the spectral wk-intensity, which we denote by ~wk11~k, in the 
case of scalar quantities ~ and 17, depends (in addition to w) only on the absolute value of the vector k. 

It then follows from ( 2.4) that the correlation functions of the w-amplitudes that are not spatially de­
composed is 

~"' (r + p) r1:, (r) = ~"' (r + p) Yl: (r) a (w- w'), (2.5) 
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where the w-intensity which multiplies o ( w - w' ) is equal to 

+co 
~"' (r +pH: (r) = ~ ~"'k TJ:~ elkP dk. ( 2.6) 

For scalar quantities,. this intensity depends (in addition to w) only on the absolute magnitude of the vec­
tor p, i.e., on the distance between the two points under consideration. 

Finally, according to the same general rules, we define the space-time correlation function of the fields 
Ht, r) and 17(t, r): 

+co +co 
'¥~~(-r,p)==~(t+-r,r-rp)'~"/(t,r) = ~ ~"'(r+rh:(r)ei"'Tdcu=~~ ~cuk'~"l:kei(cuT+ko) dcudk. ( 2. 7) 

-00 -00 

According to (2.6) and ( 2. 7 ), one needs to know only the wk-intensities for the calculation of any correla­
tion functions. We note that for the theory of Rayleigh scattering, the w-intensities (2.6) are of immedi­
ate interest. These gtve the spatial correlation at the frequency w. Let us now set down the formulas 
giving expressions for the spectral intensities of the "outside" fields 13 which are necessary for what fol­
lows. 

Let the fluctuations be described by the set of random fields ~ lm) (t, r), m = 1, 2, ... , to which corre­
spond the fluctuating "external" forces with volume densities f(m)(t, r) such that the changes in free en­
ergy in the volume V associated with their operation take place with velocity 

dE = 'V \ f<m>a~<m> dV = _ "', \ ~<m> at<m> 6. V 
dt L ) at L j at · 

m V m V 

Further, let the spectral amplitudes of the fields ~ !ml and f(m) be connected by the equations 

f~m) (r) = ~ Amn (V) ~~) (r), 
n 

(2.8) 

(2.9) 

where the Amn (V') are linear spatial differential operators. Then we have for the matrices of the spa­
tial correlation functions ( w-intensities) of the forces flml 

( 2.10) 

Here 

H ( ) 1L th fi(>} 
(U = 47t co ~· (2.11) 

ti is Planck's constant divided by 211", e = kT0 is the temperature of the system in energy units. In the 
classical region (tiw << e),. 

H (w) = HI 2.:w. (2.12) 

The following expression for the wk-intensities of the "external" forces follows from Eq. (2.1): 

f(rn)f(n)• iH(w) A• ( "k) A ("k)} cuk cuk = (21t)" { nm - l - mn l • 
( 2.13) 

We now return to the problem of interest -the thermal fluctuations in a visco-elastic isotropic medium. 

:3. SPECTRAL INTENSITIES OF THE EXTERNAL FORCES 

For the description of the fluctuations in a visco-elastic medium, it is appropriate to take as "passive" 
variables ~ (m) (t, r ), the velocity v of flow of the medium, the stress a af3 and the reduced tempera­
ture {} = T /To. The generalized forces f(m) (t, r) which should be introduced in correspondence with 
(2.8 ), will now be the external momentum with volume density P, the external deformation 
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U 0'{3* and the external sources of heat with volume densities Q. Thus the power developed by these 
forces is 

135 

The spectral equations ( 1.2 ), ( 1.3 ), ( 1.5 ), and ( 1. 7 ), if we eliminate the displacement s from them, 
change to the following upon introduction of the external forces: 

( 3,1) 

Solving ( 1.4) for the deformation, we obtain 

u,~ = cr~B I 2~ + (cr I 9K) o,~ + (G&j3)o~B, ( 3.2) 

where, in accord with ( 1.6 ), we use the notation 

( 3.3) 

Equations (1.8) and (3.2) permit us to eliminate the deformations u0!{3 and the entropy S from (3.1). 
As a result we obtain ten equations for the variables v 0'' CJ 0'{3, and {}, which we now write in the form 
(2.9 ), i.e., solving them for the w-amplitudes of the external forces. Moreover, making use of the sym­
metric tensor CJ 0!{3, we rewrite the latter in the form %< CJ o·{3 + CJ{3o• ). Thus, 

Q = _ c3cr _ D& + xT0 yr 2&. 

'"' 
(3.4) 

In such a description, a comparison of ( 3. 4) with ( 2.9) easily allows us to establish the form of the 
matrices of the operators Amn {V'), which ought to be symmetric in the given case (absence of fields of 
the Coriolis type), and which actually satisfies this condition, as already specified in ( 1.8 ). Not writing 
out the elements of this matrix (although 30 of the 55 elements are equal to zero), we at once obtain the 
wk-intensities of the external forces, made up from Eq. (2.13 ). We limit ourselves in this case to the 
classical frequencies, i.e., we use the expression ( 2.12) for H ( w). The intensities are then 

--. e • 
QQ =-(~tt)'iw (d-d ), 

where the notation 

d = D + xT 0k2 I iw. 

has been introduced. 

( 3,5) 

( 3.6) 

( 3. 7) 

( 3.8) 

( 3.9) 

It follows from (3.5) that the external momentum P = 0, i.e., it would have been possible to do without 
it from the very beginning. One could have foreseen this, since the center of mass of the system should 
remain at rest in the given arrangement of the problem, and such can be guaranteed only in the absence of 
the field P. 

*At first glance, it would appear more natural to introduce the external stresses "l:. 0'{3 rather than the 
external deformations U 0'{3' In essence, both methods are equivalent. As substitution of the second equa­
tion of (3.1) in (1.4) shows, the introduction of UO'f3 is equivalent to the action of the external stresses 
"1:,0'{3 = 2ii"U~f3+KUofY{3• However, our choice of "passive" variables and generalized forces turns out to be 
much more convenient from the computational viewpoint. 
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There is no necessity of our using Eqs. (2.6) and (2.7) to calculate the w-intensities and space-time 
correlation functions of the external forces U a{3 and Q. These functions are necessary only to obtain 
the spectral statistical characteristics of "passive" variables -the velocity v, the stress a a{3, and the 
temperature ,'}, and in addition the others -the deformation Uaf3 and the entropy S, which are expressed 
in terms of aa{3 and {} by Eqs. (3.2) and (1.8). We shall now proceed to do so. 

4. SPECTRAL wk-INTENSITIES OF THE STRESS AND TEMPERATURE 

In order to express the wk-amplitudes of the quantities v a• a a{3, and ,'} in terms of the wk-ampli­
tudes of the external forces U a{3 and Q, it is necessary to solve ( 3.4 ), rewriting it for wk-amplitudes 
(\7 -- ik) and considering that P = 0: 

Ccr I 3 + d& =- Q. 

The notation of ( 3.3) and ( 3.9 ) is used here. Using the symbols 

d1 = cl- C2K, 11 = .4 1d- A 3C2K, 

.4r = Pow2- (K + 4/a;) k2, Az = Po(u2- 2~k2, Aa ~~ Powz- 4fa;k2, .44 = Powz- ;k2 

(the last of these is necessary somewhat later) we obtain the following result: 

3K -
a= - T {2ftdV + A 2clU- .43CQ}, 

1 -- -
& = t; {2f1KCV + A 2CKU- ArQ}. 

( 4.1) 

( 4.2) 

( 4.3) 

( 4.4) 

( 4.5) 

( 4.6) 

( 4. 7) 

( 4.8) 

where U = U a a, V = Vaf3 ka kf3. Expanding the expressions for the wk-amplitudes of the quantities v 0u 
aa{3, and {} in terms of the wk-amplitudes of the external forces Va{3 and Q, for which the wk-inten­
sities are known [ Eq. (3.6)- (3.8 )], we can now compute the wk-intensities of these quantities. We omit 
the rather cumbersome intermediate equations and immediately write down the final results, pertaining 

I 

to aaf3• a, and {}, This suffices, since all the intensities which contain va, ua{3• and S can then be 
obtained with the aid of Eqs. (4.1), (3.2), and (1.8), respectively (see Sec. 5). 

Making use of the symbols of ( 4.4 ), and further introducing 

( 4.9) 

we have 

( 4.10) 

(4.11) 

( 4.12) 
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-------&· = _ 2<Wa B (~Kc _ IJ.'R:c·) 
a"~ (2:-r)'.w !:J. !:J. ' 

( 4,13) 

a n• ____ 38 {A 3CK _ A; c'R' -(A A:)} 
V' -- _;c_-;;--- (C --C) K •1 - -;:• , 

(bt)4 tw !:J. t;,.' Ll Ll 
( 4.14) 

-, B (A1 A~) 
&.& = (21t) 1 '"' "li------;;' . ( 4.15) 

5. SPECTRAL wk-INTENSITIES OF THE VELOCITY AND THE DEFORMATION 

As has already been noted, the wk-intensities of all the remaining quantities can now be found in the 
form of a linear combination of the intensities ( 4.10)- ( 4.15 ). Thus Eq. ( 4.1 ): 

permits us to obtain any intensities containing the velocity. For example, it follows from this equation 
that 

v v* -- -- k k ' " + ~ " '* + ~ '' ' · + "' ~ • - 1 { -- kf?_ l?k-- l?k-} 
oc (l- p~w2 fl- va"'fl-a~v T a::;Bv -3-a"'fl-a -9-::;a 

-an expression in which it remains to substitute Eqs. (4.10)- (4.12). In this manner, we find 

-. r-1 {( iJ: iJ:' )' (' k" k k k ' [ 1 (K-d + 4 -d ) 1 (K'd' + 4 -,l')]} v ocv~ = (211:)4 iwpo ~- A' o,~ "- "' ~) + ,!?~ r:,.- \ :r fl 1 - r;• :r fl 1 , 
4 

Similarly, with the help of Eq. (3.2 ), from which it follows that 

u~~ =cr~~j2P,, u=aj3K+C.&, 

( 5.1) 

( 5.2) 

( 5,3) 

( 5.4) 

it is not difficult to compute the wk-intensities of the deformation. We give the corresponding expressions, 
since they are necessary for the theory of Rayleigh scattering: 

( 5.5) 

-.-. €W'3"'~ 1 R (d- cc'R'l !l' < } u u =--\ ---
"'~ (bt) 4iw \ K' t;,. ~ t;,.' ' 

( 5.6) 

-. e { A3d1 A; d: • 2 ( R R' )} 
uu =(~1tJ•tw R't;,.- Rt;,.' -CC k t, ---;;: , ( 5. 7) 

-, -. ek•a"'~ (cR [l' c'R' ) 
u"'~ .& = - (21t)• '"' T- ~ t;,. • ' ( 5,8) 

-. e (CKk' c'R'A;-cRA: ') 
u& - ---- --- ---=------,;-----=--

- (21t)' '"' !:J. K t;,.' . ( 5.9) 

By the same method, we can obtain the mutual intensities of deformation and stress. We set down only 
one of them -for the scalar quantities u and a (the relative density and pressure): 

-. e { A"d' R'A;(d'-CC*K) -C(C-C')K' ('6__ A~)}· (5,10) 
ua = (~1t)'tw -t;,.-- Kt:J.' t;,. t;,. 



138 S. M. RYTOV 

So far as the wk-intensities containing the entropy S are concerned, they are easily computed by 
means of ( 1.8 ) . However, we shall not carry out the corresponding derivations since they are not of much 
interest. 

6. SPATIAL CORRELATION 

Making use of the ,..,k-intensities, we can compute, by Eq. ( 2.6 ), the corresponding w-intensities which 
give the spatial correlation of the quantities under consideration at the frequency w, while from ( 2. 7 ) we 
find the correlation functions of the spectrally-nonexpanded quantities. 

For the calculation of the integrals (2.6 ), it is not difficult to carry out integration in k space over 
the angles, after which there are left single integrals over k, which are taken with residues at the poles 
which determine the roots kj of the dispersion equation. It is not difficult to see [from ( 4.5) to ( 4.8 )] 
that the dispersion equation divides into two parts: 

6. = 0, A 4 = 0, 

where the first defines the roots k1 and k2, corresponding to the compressional waves and heat waves: 

k2 iwpo p R) 
12 = --~-= (- + ' 
' 2x1 (K+ M) -

while the second defines the root k3, corresponding to shear waves: 

ki = PoW2 / f'--: 

In ( 6.1) the following notation was introduced: 

(6.1) 

(6.2) 

(6.3) 

It should be emphasized that the determination of the roots kj and, it seems, the computation of the w-in­
tensities also, does not require a concrete form for the dispersion law, i.e., the correlation at a frequency 
w can be found for an arbitrary frequency dependence of the parameters of the medium. The root k3 

plays a role only for velocities va and tensor quantities a; 13 , u;13 ; the scalar quantities a, 1t, u and 
S naturally are not connected with shear waves. 

The spectral correlation lengths are naturally determined by the path length (reduced by a factor e ) 
of waves of different types. As an example, let us introduce the w-intensity of the temperature 1t: 

• El {1 [(I P-2iwx1) •• (! P-2iwx 1\ • J } .&w (r + p) & w (r) = 16"'P -;z \ - R e-w,p + + R ) e-rh,P + compl. conj. 

If the thermal conductivity K- 0, then, in view of the fact that k2 ,..., 1/-riZJ., the correlation deter­
mined by thermal waves remains (for each p) suitable small in comparison with the correlations deter­
mined by the compressional waves. 

For spectrally non--decomposed quantities, if we limit ourselves to the case T = 0, we have, in accord 
with (2.7 ), 

+<» 

'¥;~ (0, p) = ~ (t. r-+ pf~(~ = ~ ~ ("'"''l:k eikp d<odk. 
-8 

( 6.4) 

For the calculation of t/1~ 11 it turns out to be much more effective to carry out the integration initially 
over w. The fact is that the integral 

+co 
h.~ (k) = ~ t,,,k·r1,:kd<•l ( 6.5) 

is evaluated in a number of cases with the help of certain general theorems from the theory of residues, 
which permit us either to do without a concrete model of the dispersion laws, or to limit ourselves to a 
precise statement of these laws only for certain ranges of the parameters. We set forth these theorems, 
omitting their proofs (although they are very simple), and not pursuing the most general form. 

Let the path of integration r run along the imaginary axis z = iw and close up at infinity to include 
the left half plane (in which all the roots of the dispersion equation of our dissipative system are found 
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for real k). Further, let f (z) be the Hurwitz polynomial of degree N, and g (z) a polynomial of de­
gree ~ N which does not have common roots with f ( z ) . Finally, let a and a be real positive numbers. 
Then 

1 _.h { g(z)(z-a) g(-z)(z+a) )!!!___ g(r:o) _ 2 'g(a) (l-_c:_\ __ g(O)a 
27ti 'j' f(z)(z-a)- f(-z)(z+a) J z - f(cn) f(a) a) f(O)a · 

r 
(6.6) 

In particular, for a = a, 

_1_~ fg(z) _g(-z)}!!:!..- g(=) _ g(O) 
27ti ';Y ) f (z) f(- z) z - f (=) f (OJ • 

(6. 7) 
r 

For the same conditions, 

- 1- ~I ~-g(-z)} dz =lim _:_r__g£l_ _g(-z) \ 
27ti 'j') f(z) f{-z) z'-oo 2 \. f(z) f{-z)j · (6.8) 

r 
It is not difficult to see that most of the wk-intensities either themselves have the form of the half-in-

tegral expressions entering here, or to reduce to such a form for particular assumptions on the character 
of the dispersion. Thus, for example, the intensities ( 4.11)- ( 4.13 ), ( 4.15 ), and ( 5.1) have the form of 
the integrand in ( 6. 7 ), while the intensity ( 4.14) takes on such a form for real C (absence of dispersion 
in the coefficient of thermal expansion), The intensities ( 5,2) and ( 5.3) [but for real C and ( 5,4 )] have 
the form of the integrand in (6.8 ). So far as the integrals ( 6.5) are concerned, [integrals of the intensi­
ties which contain the deformations u~13_and u ], we must for their com_putation rely on the laws of dis­
persion for the compressional modulus K and (or) the shear modulus IJ-. Equation ( 6.6) is obtained for 
just that case in which use is made of a very simple law with a single relaxation time 

- K00z+Ko! 't"' 

K = z+1 I"' p.= 

The expressions for I~TI (k) are so simple that the subsequent calculation of the correlation functions 
( 6.4) presents no difficulties. As a result we obtain formulas in a number of cases which depend mater­
ially on the dispersion of the parameters (containing values of the parameters for z = 0 and z = co). 
Because of lack of space we limit ourselves for illustration only to autocorrelation functions for the rela­
tive density u: 

( 1 ~f Mo ) , e (Ken- Kol <Ji {p, a) 
'Yuu (0, p) = 8 K- -1 + B M 0 (p) + 21tKoK " (K + M ) ' 

\ co • T o co 1a a a 
( 6.9) 

where 

F (k~a) exp (-I k1a I p)- F (k~al exp (-I k2a I p) 
<\> (p, a) = {k2 - k2 ) , F (k2) = (poa2 + Mak2) (Dla + "Iak2). 

1a 2a P 

The index a here denotes parameters at z =a= K0/K 00T 1• 

In the absence of dispersion in the bulk modulus (Kco = K0 = 1/f3T) the second term of Eq. (6.9) van­
ishes and the first yields the thermodynamic expression* 

83r 
'Yuu = 1 + •;~ Pr fLo o (p). 

In the case of a liquid (IJ-o = 0 ), if we consider that u = - p/p0, where p =fluctuations in the density, we 
then obtain the usual formula 
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*Calculated with account of the correlation of the displacement of the medium at different points (and, 
consequently, fluctuations of the form also of nonoverlapping volumes), which takes place in a solid, in 
contrast to a liquid. (See Sec. 3 in Ref. 18, and also Ref. 19, in particular p. 56.) 
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