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The results of the calculations of these functions are shown in Tables I and II.* An investigation of the 
computed functions (cf. for example, Refs. 2 and 3, in which this type of analysis was first applied) shows 
that in the present case the error in the electron energy spectrum is approximately 10 percent. We may 
note that the method of moments is so far the only method which makes it possible to determine with rea­
sonable accuracy the average behavior of an electron-photon shower in the energy region being considered. 
In calculating the moments, the photon absorption coefficient u has been assumed constant and equal to its 
asymptotic value u = u0• However, in computing the distribution functions the photon absorption coeffi­
cient has been assumed equal to O"min = 0.65. As follows from the results of Ref. 1, this method makes it 
possible to take account of the approximate dependence of u (E) on energy, leading to better agreement of 
theory and experiment. The value 0.65 corresponds to the value of O"min in air; the computed curves, 
however, apply to the development of showers in materials with atomic number Z approximately up to 30 
with good accuracy.4 The numerical results which have been presented may be useful in the analysis of 
certain cosmic-ray experiments. 

1I. P. Ivanenko, J. Exptl. Theoret. Phys. (U.S.S.R.) 31, 86 ( 1956 ), Soviet Phys. JETP 4, 115 ( 1957 ). 
2I. P. Ivanenko and M.A. Malkov, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 150 (1957), Soviet Phys. 

JETP 5, 112 (1957). 
3I. P. Ivanenko, J. Exptl. Theoret. Phys. (U.S.S.R.) 32,491 (1957), Soviet Phys. JETP 5, 413 (1957). 
4 P. S. Isaev, J. Exptl. Theoret. Phys. (U.S.S.R.) 28, 374 ( 1955 ), Soviet Phys. JETP 1, 379 ( 1955 ). 

Translated by H. Lashinsky 
20 

SOVIET PHYSICS JETP VOLUME 6, NUMBER 1 JANUARY, 1958 

CONTRIBUTION TO THE THEORY OF SCATTERING OF LIGHT NEAR POINTS OF 

SECOND-ORDER PHASE TRANSITIONS 

M. A. KRIVOGLAZ and S. A. RYBAK 

Institute of Metal Physics, Academy of Sciences, Ukrainian S.S.R. 

Submitted to JETP editor December 25, 1956 

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 139-150 (July, 1957) 

The scattering of light by ferroelectric and ferromagnetic crystals in the vicinity of second­
order transition points is considered. Calculations are performed both for single component 
crystals and for solid solutions. By way of illustration light scattering by BaTi03 type crys­
tals as well as by Rochelle salt or KH2P04 type crystals is examined. The effect of an exter­
nal field on the scattering is investigated. 

I. Ginzburg1 has shown that at temperatures close to the temperature of a second-order transition there 
occurs additional scattering of light which is particularly intense near the critical point, that is, near the 
point where the curve for second-order transitions merges into the curve for transitions of the first 
order. This effect has been experimentally detected by Iakovlev, Mikheeva, and Velichkina2 who investi­
gated the dispersion of light in quartz near the point of the a ~ {3-transformation. Herein we shall carry 
out a further theoretical investigation of the problem, primarily where ferroelectric materials are con-

* In the first line of each column of the tables the first number denotes the energy of the initial electron 
or photon and the second the energy of the secondary electron. 
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cerned. We shall explicitly take into account the anisotropy of the fluctuation of the dielectric constant Eo 
(for light), which obtains even in cubic (or almost cubic) crystals, and the depolarization of light associ­
ated therewith. We shall investigate the influence of the electric field on the intensity of scattering. In 
addition to the case considered by Ginzburg, when there are only square terms in the expansion of OE 0 in 
powers of the components of the polarization vector, we shall also examine the case which obtains in cer­
tain ferroelectrics (for example, in Rochelle salt), when this expansion also comprises linear terms. We 
shall also consider the scattering of light by solid solutions of ferroelectrics. 

2. The additional scattering of light near the second-order transition points is associated with the in­
homogeneities of the dielectric constant Eo, caused by the fluctuation of the internal parameters that char­
acterize the long range order in the less symmetric phase (in the case of ferroelectrics, such internal 
parameters are the components of the polarization vector). Near second-order transition points inhomo­
geneities of this type can always be regarded as static. For anisotropic crystals the question of scattering 
of light by inhomogeneities of the dielectric constant, caused by thermal vibrations of the lattice, has been 
examined by Motulevich.3 Carrying out exactly the same examination for light scattering by the static 
distribution of the inhomogeneities of the dielectric constant tensor, we find that the intensity of the scat­
tered light is 

~: =K1 K216::~~2 ~: cos-'t31 ·cos-2o2 / ± sa~qe~e~\'· 
"'·~-1 

( 1) 

Here J 1 is the intensity of the scattered wave, J 0 is the intensity of the wave incident on the crystal, V 
is the volume of the crystal, c is the speed of light, R is the distance from the point of observation to 
the scattering crystal (the size of which is assumed to be appreciably smaller than R ), k1 and k2 are 
the wave vectors of the incident and scattered waves (in the crystal), e1 and e2 are the unit polarization 
vectors of these waves (having the components e~ and e~, where the indices a and {3 designate the re­
spective Cartesian coordinates), n1 and n2 are respectively the indices of refraction for the incident and 
scattered waves, and 6>1 and o2 are the angles between the electric field vectors and the induction vec­
tors in the incident and scattered waves (in the crystal), respectively. The factors K1 and K2 take into 
account the decrease in the intensity of the incident and scattered rays in passing through the crystal-air 
interface and can be calculated by means of the familiar formulas of crystal optics.* Lastly, Ea{3q de­
notes the q-th Fourier component of the deviation of the OE~{3 component of the dielectric-constant tensor 
from the mean value 

sa~q = ~ ~as~~ eiqr d-r:, 
v 

( 2) 

where q = k2 - k1• In deducing expression ( 1) it was assumed that rotation of the plane of polarization in 
the crystal is absent or can be neglected. It was further assumed that light absorption in the specimen is 
negligible. 

In the case of cubic crystals, in which the index of refraction is independent of the direction of the wave 
vector and of the polarization vector and the angles o1 and o2 are zero, the expression for the intensity 
of the scattered radiation is simplified to 

( 3) 

The change in the dieleetric constant connected with the fluctuation of polarization in this case is also a 
tensor (not a scalar) quantity. 

The further examination will be carried out in terms pertaining specifically to ferroelectric crystals. 
In the vicinity of the temperature To of the transition to the ferroelectric state we can retain only the 
first terms of the expansion of the components of the tensor E~f3 in powers of the components of the po­
larization vector: 

( 4) 

*Repeated reflections from the other faces of the crystal, which greatly complicate the picture, can be 
eliminated by blackenin!~ these faces. 
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where the coefficients do not depend on the polarization. Here and below summation from 1 to 3 over all 
twice-repeating indices (in a given term) is implied. The polarization vector P can be regarded as con-

sisting of a mean value P and a fluctuating part .6.P. Replacing P in ( 4) by the sum P + .6.P, we de­
termine ~E~f3' retaining only the terms linear in .6.P 'Y, and then, invoking ( 2 ), express the Fourier com-

ponents of the dielectric constant tensor in terms of the Fourier components of the polarization vector 

P'}'q 

( 5) 

Substituting ( 5) in ( 1 ), we obtain the following formula for the intensity of the scattered light, connected 
with the fluctuations of the polarization: 

where the function 

F (I 2) _ K K w•v n2 -~, _ 2 • 
' - 1 2 16 2 'R 2 -~- COS u1 ·COS u2 

1t c n1 
( 7) 

may be regarded as independent of the temperature. 
The mean values of the squares and products of the Fourier terms constituting the fluctuation of the 

components of the polarization vector can be determined by means of the thermodynamic theory of fluctu­
ations. The distribution of fluctuation probabilities, as is known, is given by the expression 

w ~ exp (-Ll<D J kT), ( 8) 

where .6.<P is the change in the thermodynamic potential incident to the appearance of fluctuation. In the 
case when the polarization of the crystal undergoes fluctuational changes, .6.<P can be written in the form 

( 9) 

Here <P is the thermodynamic potential per unit volume,* Aaf3rfJ is a fourth rank tensor and x'Y and xfJ 

are Cartesian coordinates ('Y and fJ = 1, 2, 3 ); the last term takes into account the changes in the thermo­
dynamic potential incident to the appearance of inhomogeneities in the fluctuation distribution; terms with 
higher order derivatives can be disregarded, provided (as in the case of scattering of light) the predomi­
nant part is played by sufficiently smooth fluctuations. 

The thermodynamic potential per unit volume of a ferroelectric in the presence of an external electric 
field E can be written as <P = f (P) - EP, where f (P) is independent of E. Hence differentiating the 
equilibrium conditions <Pa = 0 with respect to P{3, we obtain 

(10) 

Comparing Eq. ( 10) with the equation for the dielectric susceptibility tensor Kaf3 : P 0'. = Kaf3E{3, we find 

that the derivatives <Pa{3 are components of a tensor that is the reciprocal of the dielectric susceptibility 
tensor: 

( 11) 

Replacing the fluctuations .6.P 0'. by their Fourier expansions 

LlP = ""' (P ei><r + p• e-i><r) ex ~ ax o:x , (12) 

" 
from Eqs. (8), (9), and (11), we obtain 

( 13) 

*For simplicity of notation we shall designate the partial derivatives with respect to <P through indices: 
<fJ a ::: 8 <fJ /8P 0'.' <P c := 8<P /8c, etc. 
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By means of the distribution of probabilities ( 13) we can express the mean value of the products of the 
Fourier components eorresponding to any value of K in terms of the elements of the matrix that is the 
reciprocal of the Ka~~ + Aa{3yfJ KyKfJ. Substituting the values so obtained for the case of K = q in place 

of PyqP}q+ PyqPy'q in Eq. (6 ), we obtain 

In the case of scattering of light, when the wavelength is much greater than the lattice constant, the 
second addend in the Iast factor in ( 14) -except for a narrow region near the temperature of the second­
order phase transition, (where some components of the tensor K~1{3 vanish)- is appreciably smaller than 

the first term. In this case the expression for the intensity of the scattered light assumes the more sim­
ple form 

~~ 1- = F (I. 2) kT P-a~. y ~-~·w, y' + 4),"'~· y l-a'W, y•a.lia, + 4/,,~, ya I,,,W,Y'8' P8 P8,] et, e~, e~ e~, xyy'-
o 

(15) 

All the quantities in formula ( 15) can be determined from independent measurements. Thus A.a{3, 'Y 

and A.ct{3, '}'B' according to ( 4 ), can be found, for example, by investigating the influence of an external 

electric field on the index of refraction, while the constants in expression (7) for F (1, 2) can be deter­
mined from ordinary optical measurements. Thus formula ( 15) enables us to calculate, in the general 
case of a ferroelectric with an arbitrary structure, the intensity and polarization of the part of the scat­
tered light associated with the fluctuations of polarization. If the second addend in the last factor of Eq. 
( 14) cannot be neglected, a more complicated formula must be used for evaluating J 1/ J 0• Components of 
the tensor Aa(3,yfJ entering into (14), which are also important in determining the intensities of scat-

tering of x-rays, thermal neutrons, and other types of waves at temperatures near the second-order tran­
sition temperature, can be determined from comparisons of theory with experiment. They can also be 
calculated with the aid of the statistical theory of ferroelectrics based on a specific atomic model. 

In many crystals alll the components of the tensor A.a{3, 'Y vanish identically, owing to the requirements 

imposed by symmetry of the crystal. In particular, this occurs in crystals with centers of symmetry in 
the nonferroelectric phase. (It was exactly this case that was examined in Ref. 1.) Temperature depend­
ence of the intensity of the scattered light near the second-order phase transition temperature To differs 
markedly for crystals in which A.a{3, 'Y = 0 as compared with crystals in which A.a{3, 'Y =1- 0. In the first 

case with· T ?: T0, when P = 0, according to ( 14) the intensity of the scattered radiation associated with 
fluctuations of polarization becomes zero.* With T < To the ratio J 1/J0 increases very quickly, attains 
a maximum value and then falls off. When A. {3 =1- 0, the intensity of this scattering is not zero even 

ct , 'Y 
with T > T0• The ratio J 1/J0 attains a maximum at T =To and then decreases with further reduction 
of the temperature. 

*It must be emphasized that in the present contribution we consider only scattering by fluctuations of 
polarization and do not take into account scattering by thermal oscillations or by fluctuations of the inter­
nal parameters charaeterizing the short-range order the orientation of the dipole moments of different 
cells. The presence of inhomogeneities associated with fluctuations of these internal parameters must 
lead to additional scattering, which must occur both above and below the temperature T 0• There is rea­
son to think, however, that in the most ineresting cases in the vicinity of the critical point for crystals 
with A.a{3, 'Y = 0 or near the usual transition point for crystals with A.a(3, 'Y =I 0, when the intensity of the 

scattering under examination here becomes anomalously great ( see below), the scattering by fluctuations 
of the short-range order parameters plays a relatively insignificant part. It should also be noted that 
A.ct{3, 'Y and A.a{3, yo entering into the deduced expressions for the intensity (in which only fluctuations of 

polarization were taken into account) must be determined for constant values of the short-range order 
parameters, corresponding to thermodynamic equilibrium. Consequently, generally speaking, these quan­
tities will differ somewhat from the corresponding quantities determined from the dependence of the equi­
librium value of Eo on the intensity of the electric field, inasmuch as in the last case the short-range 
order parameters as well as P change. 
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For the purpose of a detailed investigation of the dependence of the intensity of scattering on the tem­
perature and on the intensity of the electric field we shall examine below certain specific cases of ferro­
electrics. 

3. Let us start our examination with crystals of cubic symmetry (in the nonferroelectric state), having 
a center of symmetry, and in which the spontaneous polarization is directed along the cubic axis. In par­
ticular, barium titanate, one of the important ferroelectrics where practical engineering applications are 
concnerned, possesses such symmetry. 4•5 For simplicity let us assume that the electric field is directed 
along the ferroelectric axis which we shall choose as the OZ axis. 

In crystals of this symmetry all the components of the tensor A. a vanish identically, while the ten-
ai-'•'Y 

sor A.a{3, yo in the nonferroelectric state has only three nonzero components: A.11 , 11 , A.12 , 12 and A.11 , 12 • In 

the ferroelectric state the crystal has tetragonal symmetry with which the nonzero components of the ten­
sor A.a{3, yo are those identified by the indices 11, 11; 33, 33; 11, 22; 11, 33; 33, 11; 12, 12; 13, 13; 11, 13; 

13, 11. (If the crystal has a center of symmetry, A.11 13 = A.13 11 = 0.) Below the transition temperature 
the dielectric susceptibility tensor has two nonzero c~mpone~ts: K 33 and K 11 = K22 • 

It follows from Eq. ( 5) that in the given case in the region where one can neglect the terms square in 
q the intensity of the scattered light is 

1r I fo = F (I, 2) PkT {4).~3.33"33 (ei)2 (e;)2 + 4i.fu3'<33 (c~ e~ + c~ c~)~ + 8i.a3,33)'n,33"33c~e; (ei ei + e~e;) 
+ ).~3 • 13 >< 11 [((ei)2 -t- (e~) 2) (e~) 2 + (ei) 2 ((ei)2 + (e~) 2) + 2 (eie~ + e~e~) e~e;]j. 

Neglecting the relatively minor tetragonality in calculating the factor F ( 1, 2) we can set 

F (1.2) = K 1K 2w4V I 16"2c4R 2 • 

( 16) 

( 17) 

Equation ( 16) enables us to determine the dependence of the intensity of scattering on the orientation 
of the polarization vectors of the incident and scattered radiation relative to the crystal axes and to inves­
tigate the depolarization of the light. Thus, for example, if the vectors e 1 and e 2 lie in a plane perpendic­
ular to the Z axis and are mutually perpendicular, the intensity of scattering according to ( 16) goes to 
zero. On the other hand, if these vectors have components parallel to the Z axis, then even if e 1 is per­
pendicular to e2 the intensity of scattering is not zero. In the narrow temperature interval near To, 
where one cannot neglect the terms square in q, the dependence of the scattering intensity on the direc­
tion of the vectors e 1 and e2 becomes appreciably more complicated. Above the temperature T0, as has 
already been noted, the scattering associated with the fluctuations of polarization in the crystals of this 
type vanishes. 

In order to find the spontaneous polarization and the dielectric susceptibility tensor, which, according 
to ( 16 ), determine the temperature dependence of the scattering intensity, let us make use of the expan­
sion of the thermodynamic potential per unit volume cp in powers of Pa, introduced in other investiga­
tions6 - 12 on the basis of the theory of phase transitions of the second order: 13 

3 :J 

'f='fo+ 112a(T-T0)P2 -l- 1/ 4 B1 P 4 + 1/ 2 B2 ~ P!P;.+ 1/sCrP6 + 112C2 ~ P!P!·+CaP~P~P~-EP. (18) 
a:, a'~--1 (:t,a:'=l 

The expansion has been carried out to terms containing Pa to the sixth power inclusive, in order to allow 
for a more detailed examination of the vicinity of the critical point where the intensity of scattering be­
comes particularly great. 

The equilibrium ~alue of the spontaneous polarization is determined from the condition CfJa = 0 (a = 1, 
2, 3 ). In the examined case (when P II OZ ), if E = 0, the solution of this equation is of the form: 

( 19) 

The dielectric susceptibility tensor can be found by substituting ( 18) in ( 11). Bearing in mind the equi­
librium condition cp 3 = 0, we obtain that with E = 0, the nonzero components of the tensor K 01{3 are de­
scribed by 

- Bi/C1 +-~~VB~+ 4aC1 (T0 - T); (20) 
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Substituting (20) and (19) in Eq. (16), we obtain 

(21) 

At the critical point where the second-order phase transition curve becomes the first-order transition 
curve, B1 = 0. Consequently near this point, where the phase transition curve B1 can be represented in 
the form of the expansion b (p - Pc) (here p is the pressure and Pc is the critical pressure), the scat­
tering intensity becomes particular great, as may be seen from ( 21 ). The greatest contribution near the 
critical point is made by the first three terms in expression (21) (provided, of course, the constant B2 
does not by chance also become small near the critical point). The temperature dependence of JtfJ0 is 
determined primarily by the factor [ B~ + 4aC1 (To - T )]-1/ 2• If Bj » 4aC1 (To - T ), then 

(Bi + 4aCI(T0 - T))-'1, = ljb (p- Pel. ( 22) 

that is, the intensity of scattering near the critical point must be strongly dependent on the pressure. In 
the vicinity of the critical point even a small decrease of temperature below the phase transition temper­
ature results in the opposite condition: Bj « 4aC1 (To - T). In this case, with some approximation, 

(23) 

If the transition corresponds to the critical point (p = Pc ), the relationship (23) begins to hold on condi­
tion that the terms with Ayy' vv' qv qv' can be neglected. 

In a first-order transition at the transition point aC1 (T - To) = 3Bj/I6, that is, 

[Bi + 4aC1 (T0 - T)]-'1, = 2/ B, 

and J 1/Jo is also approximately inversely proportional to the difference (p -pc ). 
In the presence of an electric field parallel to the Z axis the scattering intensity can be determined 

from Eq. ( 16 ), replacing P by the solution of the equation 

(24) 

and determining K33 by means of the first part of the equality ( 20) for I/ K33 • Specifically, in weak fields 

(25) 

where Po and K 033 are, respectively, the values of spontaneous polarization and the dielectric suscepti­
bility K33 with no field. In this case application of the field will lead to replacement of the factor [ Bj 
+ 4aC 1 (T0 - T)]-1/ 2 in Eq, (21) by 

(B1 + 6C1P~)."033 E ] . 

(B1 + 2C1P 0 ) P 0 

( 26) 

Changes in the factor ( B2 + C2P2 ) - 1 can be neglected at temperatures close to the phase transition tern­
perature, when C2P2 <?::: ~· It will be seen from Eq. ( 26) that if the electric field is parallel to the spon­
taneous polarization, the scattering intensity decreases, while if the field is directed in the direction oppo­
site to the polarization, the intensity of scattering increases. In view of the fact that in the vicinity of the 
phase transition point the dielectric susceptibility is very great while the spontaneous polarization is 
small, there should be observed in relatively weak fields a strong influence of the electric field on the 
scattering of light, i.e., a unique electro-optical effect. Thus, for example, assuming Po ,.., 104 cgs elec­
trostatic units (,.., % the saturation polarization for BaTi03 ) and K033 ,.., 500, we obtain that the electric 
field substantially changes the intensity of light scattering when the field intensity is of the order of 103 -

104 v/cm. 
Proceeding in an analogous fashion one can readily obtain the expressions for the scattering of light by 

ferroelectrics in which the spontaneous polarization vector is not directed along the cubic axis at T < T 0• 

4. Crystals such as Rochelle salt and KH2P04 exhibit piezoelectric attributes not only in the ferroelec­
tric but also in the nonferroelectric state.14•7 Fluctuation of the polarization in such crystals even in the 
nonferroelectric region produces a proportional fluctuation of the deformation. Inasmuch as deformation 
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of the crystal in turn changes the dielectric constant (for light) by an amount proportional to this defor­
mation, the components of the tensor ?1.0'{3, y in Eq. ( 4) for crystals of this type are nonzero. In these 

crystals there is a preferred ferroelectric axis (OZ) at temperatures above the transition temperature, 
while in the vicinity of this temperature only the fluctuation of the component P 3 of the polarization vec­
tor becomes abnormally great. As follows from the generalformulas ( 14) and ( 15 ), in the nonferroelec­
tric region the terms containing the components of the tensor "Aaf3, yo vanish. In the ferroelectric region 

these terms can be neglected near the transition temperature. As a result Eq. ( 14) in the given case as­
sumes the form 

(27) 

where the quantity 

(28) 

can be assumed to be temperature independent near the phase transition temperatre. This quantity de­
pends on the direction of propagation of the incident and scattered waves and on their polarization rela­
tive to the crystal and can be determined through measurements of the index of refraction (for different 
values of k and e) and its dependence on the electric field intensity. If the values of ?1.0'{3, yo and P 3H 

(where P 3H is the saturation polarization) are much greater than ?1.0'{3, y, then somewhat below the tran-

sition temperature it is necessary to take account of the terms containing ?1.0'(3, yo. In this case g ( 1, 2) 
will strongly depend on the temperature: 

g (1 ,2) = F (1 ,2) kT [(1-"~, 3 + n"B,33 P3) e~ e~] 2 . (29) 

In order to determine the temperature dependence of the intensity of scattering let us make use of the 
expansion* of the thermodynamic potential per unit volume in powers of P 3•7 

(30) 

It follows from Eqs. (11 ), (30 ), and (28) that in the nonferroelectric region above the second-order phase 
transition temperature T0K33 = 1/a (T - T0 ) and that the intensity of scattering is 

(31) 

Thus, in contrast to the case of BaTi03 crystals, scattering of light by fluctuations of the polarization 
occurs in the present case not only in the ferroelectric but also in the nonferroelectric region. Moreover 
the intensity of scattering becomes abnormally great not only in the vicinity of the critical point but also 
near the second-order phase transition point. (The sum A33vv'qv qv' becomes comparable with a ( T- T0 ) 

only at very small values of T - T0.) 

Below the temperature T0 the spontaneous polarization is determined by expression ( 19) and the scat­
tering intensity, according to (27), (11), (30), and (19), equals (cf. Ref. 15): 

Jl I lo = g (!' 2) cl /(4aCI(To- T) + Bi- Bl l!Bi + 4aCI(To- T) + C,B33VqV +ClA33vv' qvq). (32) 

If Bi » 4aC 1 (To - T ), then 

(33) 

The inequality Bi » 4aC 1 (To - T) always holds in the case of ordinary phase transitions of the second 
order as well as in second-order phase transitions close to the critical point if T0 - T is sufficiently 
small. In the case of transitions close to the critical point, however, the inequality Bi « 4aC1 (To-T) 
begins to obtain at relatively small values of To - T and in this case 

*In the expansion (30) it is assumed that the component of the strain tensor uaf3 are already ex­

pressed through the polarization P 3 (proportional to them) and eliminated from the expression for the 
thermodynamic potential. Analogously, in the expansion of E~f3 the tensor uaf3 is also eliminated, i.e., 

the expansion ( 4) is carried out not for a constant deformation but for a constant pressure, 
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J 1 I J0 = g (1 ,2)/[4a (To-T)+ B3:l,q, + A33''' qv q,,]. (34) 

In the case of a first-order phase transition close to the second-order transition, utilizing the expres­
sions15 for the second derivatives of the thermodynamic potential, we find that above the transition tem­
perature in the nonferroelectric phase 

J1 1 J0 = g (1,2) C11 [3Bif16 + C1B33,q,+C1 Aaa,,,q, q,.], (35) 

while below the transition temperature in the ferroelectric phase 

Jl I Jo = g(1,2) cl I [3Bif 4 + ClB33vqv+Cl Aaa,,,q, q,,]. ( 36) 

Thus, if C1A33vvqv qz.l « B~, then in case of a phase transition the first order to the ferroelectric phase 
the intensity of scattering is reduced by a factor of four. 

5. The above analyses pertained only to single-component crystals. In binary solid solutions, in addi­
tion to fluctuations of the polarization, there are also fluctuations of the concentration of one of the solu­
tion components. These fluctuations are not statistically independent ( cf. Ref. 16 ), which can lead to the 
appearance of new effects. 

When there are concentration fluctuations ~c (with constant polarization), the components of the ten­
sor E~f3 change by amounts A.a{3, 4~c proportional to ~c. Consequently in solid solutions, where there 

are fluctuations of both the polarization and composition, the Fourier component of the dielectric constant 
is defined by an expression which is a generalization of ( 5 ): 

(37) 

where cq is the Fourier component of the concentration while the quantities A.a{3, 4 can be regarded as 

independent of P near the transition temperature. These constants correspond to changes in E~f3 with 

changes of c at constant values of P CY' They are connected with the constants A.~f3, 4, corresponding to 

changes in E~f3 with changes in c at equilibrium values of P a (which vary with changes in the compo­

sition) by the simple relationship 

Substituting Eq. ( 37) in ( 1) we find that the light scattering intensity is expressed through the mean 

values PyqP~'q• Pyqe~ and I cq 12. These mean values, as before, can readily be found by considering 

the terms proportional to ~p a~p f3' ~p ~c and ( ~c )2 in the expansion of the thermodynamic potential. 

Carrying out the same ealculations as for the single-component ferroelectric, we find that in ferroelectric 
solid solutions the scattering intensity associated with fluctuations of polarization and composition is given 
by the expression 

J1/ Jo = F ( 1 ,2) kT [),,0, i Aa'W, i' KiJ + 4/,,0, l Aa'W, Y'IY Pa, K£:.:~ + 41'a0. yil Pa Pa• K;).] e; e;. e7, e~'· ( 38) 

[instead of Eq. (15)]. 
Here i and i' go through 1, 2, 3, and 4 (while y and y' run through 1, 2, and 3 ), the quantities Kii~ 

are matrix elements of the matrix that is the reciprocal of the matrix Kii', while the matrix elements of 
the latter matrix are 

with i = I, 2, 3 with i = I, 2, 3 (39) 

Since the equilibrium condition cpa = 0 is fulfilled at all concentrations, we have 

d:pa /de= 'faa' dP a' I de+ Cf'o:c = 0. 

Therefore 

Cf'ac = - Cf'aa' dP a.' I de = - x;;,_~ dP a.' I de. ( 40 ) 

In the nonferroelectric region the derivatives dP a/dc equal zero and the fluctuations of the polarization 
and of the composition are statistically independent. In the ferroelectric region some of the derivatives 
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Cf'ac are nonzero; consequently these fluctuations become statistically dependent. Further the derivative 
Cf'cc near the second-order phase transition temperature can be written in the form 

'fcc= N (Of' A I oc- Of'B I oc), (41) 

where N is the number of molecules per unit volume and 1-L A and i-LB are the chemical potentials of the 
first and second components of the solution in the nonferroelectric region. 

Thus all the quantities entering into expression ( 38) for the intensity of scattering by solid solutions 
of ferroelectrics, just as in the case of single component ferroelectrics, can be determined by means of 
independent experiments. To find these quantities one must determine the index of refraction and its de­
pendence on the electric field intensity and the concentration, the static dielectric susceptibility tensor, 
and the dependence of the spontaneous polarization and the chemical potentials of the components on the 
composition. In the immediate vicinity of the transition temperature the tensor Kii' should be replaced 
by 

Kii' + Bii'v qv + Aii'vv' qv q"' (i,i' = 1, 2, 3, 4; '1, v' = 1, 2, 3), 

where Bii'v and Aii'vv' near T0 can be regarded as temperature independent. 
In the case of cubic ferroelectrics in which the spontaneous polarization is directed along the cubic 

axis and which have a center of symmetry, A.a{3, i = 0 with i = 1, 2, and 3, A.a(3, 4 = A.(<') a{3 and the only 

one of the derivatives Cf'ac that is nonzero is Cf'ac· In this case for T < T0, we obtain the following ex­
pression for the intensity of scattering 

Jl - F ( 1 2) k I 4F""" [) 2 ( 1)2 ( 2)2 - 2 I 2 1 2 2 2) ) l 2 ( 1 2 1 2 J-- , T '1-(m )"x3.,,m '33.33 e~ e3 + '·11.33 (elel + e2e2) + '33,33 ·u,33e3e3 e1e1 + e2e2)l 
o ' •ac , · -rcc 

where F ( 1, 2) is defined by Eq. ( 17 ). In the nonferroelectric region with T > To 

~~- = F (1,2) kTi.!J?cc· 

(42) 

(43) 

In solid solutions there is thus scattering of light by fluctuations of the concentration with T > To as well, 
The intensity of scattering increases in the ferroelectric region. 

The intensity of scattering can also be expressed in terms of the constants entering into the expansion 
( 18) of the thermodynamic potential in powers of P a· Invoking Eqs. ( 19) and ( 20) and the expression 
Cf'ac = - aPdT0/dc which is valid near the transition temperature, we obtain 

JoF, (~: 2)kT = [B~ + 4aC1 (T0 - T)]-'1, [ 1 - a 2 (d~; y ( 2?cc VB~+ 4aC1 (To-T) r] ?~1 {2'fcc p.;3,33 (ei)2 (e~) 2 

+ )2 (12+e1e2)2+21 1 12(12+12)] 2 . dT0( 12)' 12 , (12+12)] '11,33 e1e1 2 2 '33.33 ·n,a3e3e3 e1e1 e2e2 - 1.4 a dC e e [r.33,33e3e3 + 1.11,33 e1e1 e2e2 

+ 1.: v-B~ + 4aC1 (T 0 - T) + J.i3. 13 [((ei)2 + (e;) 2) (e~) 2 + (e~) 2 ((ei) 2 + (e~)2 ) + 2 (eiei + e~e;) e~ei]}. ( 44) 
B2 -t- C2P2 

In solid solutions the critical point lies at the point where the second-order phase transition curve goes 
over into the decomposition curve.11•13 According to Landau, 11 instead of the condition B1 = 0, which is 
true for single component crystals, we. have at this point the condition 

It is evident from ( 44) that in solid solutions there should also be observed abnormally great scattering 
in the vicinity of the critical point. This scattering is associated both with fluctuations of the polarization 
and with fluctuations of the concentration. Even if the index of refraction is only weakly influenced by the 
polarization, i.e., if the values of A.a{3, yo are small, extremely intense scattering of light (provided A.4 

is not small) due to fluctuation of the composition should be observed in solid solutions close to the crit­
ical point. 

In solid solutions of ferroelectrics such as Rochelle salt or KH2P04, where the components of the ten-
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sor "Aa{3, y (y = 1, 2, 3) are nonzero, in ordinary second-order phase transitions (far from the critical 

point) fluctuations of the composition near the temperature Tu play a relatively minor part in the scatter­
ing of light. Hence above the transition temperature, where CfJ'Jc = 0, we can as before use expressions 
(27) or (31). Below the transition temperature in the ferroelectric region one should replace 1/K33 by 
( 1/K33 )[ 1 - (C0Jc )2K331<Pcc) in the denominator of ( 27 ). In terms of the thermodynamic theory of phase 
transitions of the second order this reduces to replacement of 2a (To - T) in the denominator of Eq. 
( 33) by 

2a (T 0 - T) [ 1 - a 2 (dT 0 I dc) 2 I 2BI 'feel· 

6. The results deduced above, after appropriate modification of the designations, can obviously be fully 
applied to transparent ferromagnetic crystals. The results obtained by means of the theory of phase tran­
sitions of the second order can also be applied to antiferroelectric and antiferromagnetic materials in the 
absence of an external electric field where the former are concerned or a magnetic field where the latter 
are concerned. In the presence of an external electric field the state of an antiferroelectric is character­
ized by two vector parameters and the formulas for the intensity of light scattering, just as in the cases 
discussed above, can be obtained on the basis of the thermodynamic theory of phase transitions. 18 

All the expressions given above pertain to the scattering of light by a single crystal having no domains. 
A single crystal of this type can be realized by placing the ferroelectric in a capacitor.7 Our results can 
also be applied to the scattering of light by individual domains provided their dimensions are appreciably 
greater than the wavelength of the light. If, however, the dimensions of the domains are of the same order 
of magnitude or smaller than the wavelength, then in addition to the scattering examined above there must 
also be evinced an additional extremely intense scattering by the domain walls. 

In addition to scattering of light by the fluctuations of the polarization and the composition, in crystals 
there is always also some scattering connected with lattice vibrations. The intensity of this part of the 
scattering can be calculated3 if the elastic and elastic-optical constants of the crystals are known. Both 
types of scattering can often be partially separated experimentally inasmuch as they depend in different 
ways on the temperature and external fields. 

It would be of great interest to carry out an experimental investigation of light scattering near the points 
of second-order phase transitions in different ferroelectric materials with simultaneous measurements of 
the static dielectric constant, the index of refraction and its dependence on the electric field and the com­
position. 

CONCLUSIONS 

1. We have deduced equations for determining intensity and polarization of light scattered both by sin­
gle-component ferroelectrics (or ferromagnets) of arbitrary structure and by solid solutions. All the 
quantities entering into the expressions for the scattering associated with fluctuations of the polarization 
(magnetization) and of the composition can be found (or evaluated) by means of independent measurements 
of the index of refraction and its dependence on the external field and the composition, static dielectric 
constant and the concentration dependence of the spontaneous polarization and the chemical potentials (for 
solid solutions ) . 

2. If the expansion of the dielectric constant (for light) in powers of the components of the polarization 
vector contains linear terms (the case, for example, in crystals such as Rochelle salt or KH2P04 ), then 
both below and above the second-order phase transition temperature there must be observed anomalously 
great scattering. If there are no linear terms in this expansion (for example, in crystals such as BaTi03 ), 

then scattering of the type in question will occur only in the ferroelectric (ferromagnetic) region and will 
be absent (in single component crystals) above the transition temperature. 

3. The temperature dependence of the intensity of light scattering by crystals of the BaTi03 and crys­
tals of the type of Rochelle salt and KH2P04 was evaluated by means of the thermodynamic theory of phase 
transitions of the second order. In crystals of the BaTi03 type (both in single component ferroelectrics 
and solid solutions) particularly intense scattering should occur near the critical point on the second-order 
phase transition curve. 

4. There should be observed an appreciable change in the intensity of scattering by ferroelectrics in 
an external electric field; this should occur in relatively weak fields (for BaTi03 type crystals, in fields 
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of the order of 103 - 104 vI em). In the vicinity of the critical point the scattering should be strongly de­
pendent on the pressure. 
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The Bogoliubov equations for the "partial distribution functions" are used to compute the effec­
tive field acting on charged particles in a plasma. It is shown that the effective field differs 
from the mean field by a small quantity of the order 1/N where N is the number of particles 
within a sphere whose radius is equal to the Debye radius. This result also holds in the pres­
ence of a magnetic field. 

As is well known, the electric field acting on an individual particle of a medium is not equal to the aver­
age field in the medium. For example, in a gas of free dipoles the effective field Eeff is given by the 
Lorentz formula Eeff = E + 47rP /3 where E is the average field and P is the polarization of the me­
dium. This formula is obtained on the assumption that the molecular dipoles are mutually impenetrable 
so that each dipole behaves as if it were placed inside a cavity in a polarized medium. 

In the case of ionized plasma there is, of course, no basis for such an assumption. However, the effec­
tive field in a plasma should also, generally speaking, differ from the average field because there exists 


