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Quantum oscillations of the electrical conductivity ¢ @8 and specific resistance p®B tensors
are investigated on the basis of some general formulae presented in Ref. 1. It is shown that
the oscillations of ¢@B and p@B may be expressed in terms of the magnetic moment oscil-
lations in the de Haas-van Alphen effect and in terms of the classical values of the mobility
tensor. The asymptotic values of the oscillation amplitudes in strong magnetic fields are
investigated and some simple cases are considered for which calculation of the oscillation
amplitudes may be completely carried out.

IN Ref. 1 1. M. Lifshitz developed a consistent quantum theory of the conductivity of metals in mag-
netic fields. The relation between the quantum kinetic equation and its classical analog derived there
permits one to determine quantum corrections to the classical value of the electrical conductivity, and,
in particular, to determine those corrections which account for the quantum oscillations of the conduc-
tivity. The present communication jis devoted to a detailed study of these oscillations (Shubnikov-
de Haas effect?).

It was shown in Ref. 1, that the simple (classical) part of the electrical conductivity tensor can be
written in the form

0 . 0 .
o =—2 SS %‘? x*em'dedp; (x, B£2,2), % =_2 Sg 7’:2 (x# + yZ#) m'dedp,, (A)

c

where y (€,pgz) is constructed in a specific way from Green’s function for the classical kinetic equation
[see Eq. (59) in Ref. 1], and fy(e) is the Fermi distribution function.
Quantum oscillations of the conductivity tensor occur when y (€, pz) has the values determined by the
following equations:!
S I8 ’ < 2z 2z af a(xaam‘) * semik.
Aco8 = 2 ko (¢, B2,2), Ac%Z= 2 (I — L), I:° =2\\f, — 5 ho'er " dndp,,
k=1 h=1 (B)
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where w*= (eH /m*c), m* = (1/27)(8S/8¢€), and S =S (¢, pz) is the area of intersection of the con-
stant-energy surface for the electron having an arbitrary dispersion law € =e(p) with the plane p; =
const., perpendicular to the magnetic field.

The structure entering into the integrals in Eq. (B) permits one to determine easily from them the
oscillatory factor in which we are interested and to determine in this way the oscillation of A c® from
the oscillation of the magnetic moment and of the magnitude of the classical conductivity tensor.

1. CONDUCTIVITY OSCILLATIONS

Let us determine the oscillatory part of the expressions Iy and Li in (B). To do this we shall use
the concepts introduced in Ref. 3, and the same method, slightly modified and simplified.

First let us consider the contribution to the oscillatory part of the electrical conductivity of a single
group of electrons with a given dispersion law.

In the integrals of Iy and Lk, let us transform from the variables n,pz; to n,e changing the order
and the limits of integration, and also using the relation
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o'

D (n, p,) _( on \—1
D (n, ) dp, )z ’

which results from the quasi-classical expression for the energy levels of an electron in a magnetic
field:

S(e, pa) =(n+7)ehH [c (0y<1), n>1.
This gives for I
‘max a (x*m)
Ih=2 Sfo(s)z{ S za
min
where the summation sign refers to summation over uniform intervals of change of n (e, p,) for a fixed
value of €.
The idea of the calculations which follow is based on the observation, that, with the exception of f;(e)
2riKn

on
op,

1 gminn dn}de, 1)

€

and e , all the quantities entering the integrals for Iy and Lk change very slowly as functions of €
and n (in comparison with the range of variation of ¢ and n). Therefore, by virtue of the condition

n > 1 the basic contribution to the internal integral (1) is made by integrating in the vicinity of the ex-
treme points np, (€). Near these points

n—nm =15 (pz— p2)? (0°n | 0% )m,

where n =n(e py) and ny, =0 (e, przn) and consequently

|0n/dp.| =)/ 2(0%n/ 0P )m (N — nim).

This last relation permits one to determine the contribution to the inner integral of (1) very simply
by evaluating the integral in the vicinity of the extreme points:
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£17/4 refers to Nyins While the minus sign refers to npy5x. The

The plus sign in the expression e
term corresponding to nmin = 0 does not contribute to the oscillatory part of Ik and may be omitted.

All the remaining extremal points are repeated twice (for adjacent uniform intervals of change of
n (e, pz) for a fixed value of €), so that we may transform (1) into the form:

2 : T iRy i(E
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where the summation is made over all extremal points. In what follows we shall omit the summation
sign for summing over extremal points.
Considering the behavior of fj(¢) in the vicinity e = ¢ and assuming that (9np, / 8€)¢ = ¢ # 0, we find

from (2) ®
3 . . ., dny, V2 2,0 @
In~2 ;/ & Wn (C) exp {kanm (C)j:z—’;-} ifo () exp{zmk 7 e—z;)}ds = o (@n, ] 4% ShAn

X exp {2rikny () — i 5+ i}, ®)

where A = 27%20/Hw* and € is the chemical potential.
Thus, the oscillatory part of ¢ @8 (a,B # z,z) is given by the expression

© VZ w0 /@ : o
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Equation (4) for Ag®B can be rewritten in a much more compact form, if we introduce the quantity

F.=2 SS f , 2k 2nm’® de dps. (5)

It can be easily shown by calculation, analogous to that performed above, that integration in the vicin-
ity of the extremal points (excluding the trivial case np i, = 0) makes the following contribution to F:

Fr= A Q) exp {2miknn ) — i (5 F 7))

2m® (G, pp) (kr/shkn) <ehH )-:, m* (€, pg) (kx / sh k) (6)
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From this last equation we can see the relation between the quantum numbers n (€, pgz), and the area
S(e,pz). As has been shown, all the quantities, which enter into Eqs. (4) and (6), are to be evaluated
at the points € = € and p, = p’in which correspond to extremal areas of cross sections of the boundary
Fermi surface. (This problem is examined in greater detail in Ref. 3 and integrals similar to Iy and
Fy are evaluated there.)

From Eqgs. (3) and (4), it can be seen that

L (0 o s
I= e (gem) P @
Finally, Eq. (4) can be written thus:
a — 1 9 o & * . —
Ase® = 2rm* (E'( om >,;y o F,F= ;Fk- (8)

Note, that the oscillatory part of the magnetic moment of the electron gas in the de Haas-van Alphen
effect can also be written in terms of the quantity F:

S, (QF

2N (( O cikn .
AMz2=—Ah 321881;0-3792 knQmm depz%—m.

| R
Hence, we find that

F = —hH(dInSy/d.) AM=. ©)

Substitution of (9) into (8), permits one to express the oscillatory part of Ao @B in terms of the os-
cillatory part of the magnetic moment A MZ, thus;

h3H 3 .. dInS,
Ag = — @S, /@) & (m")m —g— AME. (10)

Let us introduce the “classical mobility tensor” q@®B, which is related to the classical conductivity
tensor in the following manner:

cig = 2h73 S S foq®2rm*de dp, = N(ﬁgﬁ, (11)

where Nj is the number of electrons in the conduction band, and a is the mean value of the mobility,
weighted by f,.
Since, on the other hand, the classical Eq. (A) can be transformed into

P 90 .
orn = SS fo(',_:,?)(“am )dadpz (x, B#2,2),
one obtains the following expression for q@®B:
k9 .
9 = gom oe (P (% BF2,2). (12)

Substituting (12) into (10), one finds the following expression for the oscillatory part of A o @B (for
o,B # z,z) in terms of the independent variables H, :

(Ac®®)y, ¢ = — qaP H (dIn S, [ dl) AM=. (13)

If there are several groups of electrons which determine the electrical conductivity of the metal, i.e.,
if there are several overlapping, partially filled energy bands, then every group of electrons makes its
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own contribution to A ¢®B, so that A 0 @B assumes the form of a summation of terms like Eq. (13).
In a similar way one finds the expression for the oscillatory part of A ¢Zz,. Integrating Lﬁz in the way
described above one finds

(Xf,z m* r’aZn/apﬁ l_”’>c ( S:;)\ )exp {2rtkn,n © +i (r + %})} ,

2
2z
Li=v%

which can be written in terms of F):
Ly = — ikys% (C) (dnm | dC) Fh. (14)
Because of the additional coefficient of dny, /8¢, the integral Lkz [Eq. (14)] is considerably great-
er than Iﬁz (in the ratio {/u*H where p*H = hw*). Therefore, the fundamental contribution to A ¢ 22

from those extremal sections, (of the boundary Fermi surface) on which x#% does not vanish, is made by
such terms, namely:

As# = iyom () dC Zth

Using the relation between F and AMSZ, it is easy to show for this case to this degree of approxima-
tion
dInS,, \29AM?
(As2)y, ¢y = 27: H2yem (€) (——dc-m—) —H " (15)
If xg ZZ yanishes on the extremal cross-section (of the boundary Fermi surface) [in particular, as is
ev1dent from the form of the general Eq. (59) of Ref. 1 for x zz, and from symmetry considerations,
xZ 0 Z vanishes on central cross-sections of the Fermi surface], one must take account in the integrals

m

u@={ &m

an l e2rikn dp
op, |

of the subsequent (non-vanishing) terms of the expansion of y zzz in powers of (pz — pP).
Assume that near the extremal points

2z m 1 aS 2z
%o = (pz—pz)* ‘5'175 Xo - (16)
Then
%z ot |~
2(s -2 z n I
~ 1)s hd S n—nNn (s—1)i2 pemikn dn,
Qu(e) =~ (x1) o o | | ! (17)

where as before the plus sign goes with ny, i and the minus sign with nygx.

In evaluating the integral in Eq. (17 ), one can make use of the asymptotic equation for integrals of
this form, which is given in Ref. 3.

Note that if x (€, ;) is an even function of py, then from the equality x (€, Pz) = X ,(€ , —pz) it fol-
lows that axo/ opz = 0 for pz = 0, and consequently for central cross- sectlons, the expansion in Eq. (16)
commences with a quadratic term. This means that for central cross-sections

. 02)(;2 =l

0%n

ap?

m

Qe (e) = - P

exp {2rriknm + i-% 'r.} ,

0

and the basic contribution to the oscillatory part is given by

2r

1 [1 a(Fm") S, | dt O
Az = ~{ s - . } .F.
m as + 2 lazs/apgl ap2 % B0 (18)

By introducing the component qZZ of the “classical conductivity tensor” into this equation by analogy
with Eq. (11), viz:

22 2
B \ o « B 3 (™M )
22 — (22 ~22 —_——— cm—
- ( 2rm* ) 0c (= + Ly )m m* dp, (08/0pz ’ (19)
it is easy to verify that for central cross-sections
zz = hs{ 1 o(*m .) dS,, | de azxgz} ’
2m e 210%S/ap%| ap2 Jp, =0

and therefore, Eq. (18) can be written in the form
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(Ase0) < = —qH(-mem 1ja;s ") A, (20)
If the boundary Fermi surface is convex, there is a unique extremal cross-section, i.e., the central
one, and consequently the oscillatory part of the electrical conductivity of the given group of electrons
is determined from Eqs. (13) and (20). Thus all the components of Ac®Phave one single order of
magnitude of oscillation. If there are other extremal cross-sections in addition to a central cross-
section, AcZ%is determined from Eq. (15), and the amplitude of oscillation of AcZZ will be con-
siderably greater than the amplitude of oscillation of Ac®8 («,8 # z,z) for these groups of electrons.
Egs. (13), (15) and (20) for the oscillatory part of Ac B derived above are given in terms of the
independent variables { and H. It was shown in Ref. 1 that for a concrete application of these equa-
tions and for comparison with experiment it is necessary to examine the oscillation of the chemical
potential { = {(H), resulting from the constancy of the number of electrons in all bands:

2h72 Z 2 S fo2=m; dp Az, EZ N;j= N = const
i

j n

(summation over j is extended over all bands).

In this case, in contrast to the de Haas-van Alphen effect, in which they can be neglected, these
oscillations play a fundamental role, because of the larger magnitude of ¢ @B,

If we symbolize by Ny () the classical relation between the electron concentration and the chemical
potential, namely

NO () = 2h~ ZSS fo2mm; dp de = 217 3 S fo(d D),
i i
we have, using Poisson’s equation and considering Eq. (5),

N (€)= No@C)+ k30 D) Fli=No@) + k3 D F (7). (21)
j k=1 i

Next, putting { = {, + AL, where £, is the chemical potential for H = 0, we can write
NO (1) = N° (%) 4 ) (ON/0%) AL,
i
and then it follows from Eq. (21) that
ACE3 D) (ONYT) = — D F' (Co). 22)
i i

Taking into consideration that the oscillatory pertubation on @B, as a function of the relation ¢
= {(H), has the form

Ac?® — (9578/0%) AL, (23)
we can substitute into Eq. (23) the expression for A{ from Eq. (22):
Ac™® — — (9538/0%0) D F (%) / h* S (8N%/aL).
i i

If we now use (9), the AGIO‘B are expressed in terms of:

. 96" ((dIn S, 1 ONG,
Aoi? = H o7 2 —g ™ & M /Z;c— (24
1

Finally in Eq. (24), one can express g @B in terms of the mean value of the “classical mobility
tensor”,

« F] J— dinS,,; 2 Q) aN®
AGIB=HI‘25C—0(N)O¢QZB) 2 rid ]AMI/A?JO—::— . (25)
" F "

The experimentally observed oscillations of the conductivity as a function of the magnetic field-are
described by the sum Ag @B + A109B 50 that in Eqgs. (13), (15), and (20) (or in equations corresponding
to them) one should substitute { = {,.
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For a, B # z,z this sum becomes

AG“B-I_AG HZ[ZaC (quh)/z ac quCO)]

If all the Fermi surfaces are convex, then AcgZZ + Agy%Z are determined by the analogous expression:

dIlnS

“LAMS . (26)

dInS
> R /35— ) | g am. @7

If there are Fermi surfaces with non-central extremal cross-sections, then

) . 3 dInS,,;\29AM?
Ao?? 4 Ao’ = - H? b)Y Xomz(‘o)( ) <H (28)
where the summation extends over all Fermi surfaces with non-central cross-sections.

From the formulae for the oscillatory part of the conductivity Ag @B [in what follows Ac @B will be
used to symbolize all the terms of 0B which oscillate as the magnetic field changes, i.e., sums of the
form of Egs. (26) and (27)] it is evident that each group of electrons makes its own contribution to
Ac®B, It turns out, that the contribution of each band is related to AMZ only for similar groups of
electrons. Therefore, the period of oscillation of Ac 9B is always determined by the same coefficient as
the period of oscillation of AMZ, and, of course, it coincides with that of the de Haas-van Alphen effect.’

A (1/H) = eh/cSp (%)

Principal emphasis in what follows will be on the amplitude of the oscillations of Ac@B. First, in
contrast to the oscillations of AMZ, the amplitude of the summands in Ag9B corresponding to given
“anomalously narrow” bands are determined by all the “normal” groups of electrons. Secondly, the
undetermined quantities x (€, p;) enter into a calculation of the amplitude. These quantities are also

involved in the classical expression for the conductivity.
In certain concrete cases, which are introduced in Sec. 4, the quantities y (€, p;) can be obtained from

the solution of the corresponding kinetic equations, and the magnitudes of the oscillations can be calcu-
lated exactly.

2. ASYMPTOTIC VALUES OF THE CONDUCTIVITY OSCILLATIONS IN STRONG
MAGNETIC FIELDS

Let us now examine the behavior of the amplitude of oscillation of Ac®B in strong magnetic fields,'
when yy << 1, where, in accordance with Ref. 4, we denote by vy, the relation yy = 1/(e Hty/myc) where 'm,
and t, are the characteristic mass and relaxation time, respectively. In this case we can make an

aB = %
asymptotic expansion of the amplitude in powers of y, making use of the asymptotic value of o oKL
obtained in Refs. 1 and 4. If the boundary Fermi surface is split into several closed surfaces, the
asymptotes, ooaﬁ , have the form

2 2
Toln Toz + To2 Tol1s
(3] _ 2 ! 2
oo” (H) = 7oa21 + 7o Tolz22 ToQ23 | - (29)
\ ToCs1 ToGss Qg3

Here a,, B (€o) is a matrix whose elements can be expanded in powers of y, beginning with a zero order
term, such that

T = g (S V5 — 3i), (30)

where N* is the electron density, and N~ is the hole density for corresponding groups.
Since for every group of electrons ¢®B =N oqaﬁ the asymptotic expansion of the elements of qaﬁ
begins with terms of the same order in vy, as cro , namely

2— 2 —
Tolt1z ec/H 4 1gtiss Toll13

29— 2
g® =1 — ec/H 4 751ty Tollae Tollag

(31)

Tols1 Toldse Ugs
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The expansion of the elements of the matrix E;E in powers of vy, begins, generally speaking, with a
zero order term (in some cases, the expansion of agg is the same as ﬁa_g , cf. Ref, 4) . All the elements
of u®B depend on the form of the collision integral, and generally speaking, they turn out to be functions
of Co.

Since qfflﬁ is generally of the same order of magnitude as an , the asymptotes of qgﬁ , in strong mag-
netic fields, should have the form of Eq. (31). In this case it is interesting to examine the possibility of
an exact calculation of the first term in the asymptotic expansion of qrxg as follows.

For perpendicular magnetic field H (applied along the axis OZ) and electric field E (along the axis
0Y) the electron finds itself in a steady state with a constant velocity (depending on its state) whose
mean value differs from zero. This velocity is directed along the axis OX and it is given by cE/H.*

Note that the indicated velocity does not depend on the dispersion law for the electrons nor on the state
of the electrons, i.e., it does not change because of collisions experienced by the electron. The steady
state mobility of the electron qf,‘y =ec/H is related to this velocity.

In strong magnetic fields when the mean time between collisions of the electrons is much greater
than the time required for one revolution of the electron around its classical orbit, qf,(y makes the prin-
cipal contribution to the elements ¢*¥ of the mobility tensor, and consequently

qry = ec/H 4 q2u2 (32)

0 m?

where y%ugl is the mobility, which is a function of the collision integrals. Thus it is seen by equating

(32) and (31), that the first terms in the expansion of Ex_y and g3 in powers of vy, are identical.
From Eqgs. (26) and (27), and also from Eqgs. (31) and (32), it follows that the amplitudes of all the
elements of Ag @B, with the exception of AgX¥, have the same order of magnitude in terms of vy, as do
the corresponding elements of GOO‘B- As for AcXY, its ratio to y, has a higher order of magnitude than
that of o.oxy , if %{Nﬁ # ZN;” . One can write for the relative magnitude of the oscillations in the case of
i

convex Fermi surfaces and for iN'f; # ZNj
i

dlnS
5%8/528 — *p ™ A M-
) /30 H ; ‘FJ dCu AMI ) (33)
where
011 To¥1e Uys
Y= Yo'Pa1 Do bos |5 (34)
D3y bgp Uss

and the matrix Y

: dlna ON?

(N of kR af

bxe = —57 /; T, _“mf/aaﬁ’ (@ B+ x,9),

: aa aN®,
12 k 12
o =g, | an 2igg, —wn / e

k

and, consequently, the expansion of the terms of the ypg matrix begins, generally speaking, with a zero
order term in v,.

It is characteristic that the relative order of magnitude of the oscillations of cX¥ (in terms of y,) is
less than the relative magnitude of oscillation of the remaining elements of the tensor c@8, T There is
a simple physical reason for this conclusion, namely that the asymptotic value ony in strong fields for

*It is easier to verify that this is so by noting that in a steady state the mean value of the Lorentz
force acting on the electron is zero. Since the expression for the Lorentz force does not depend on the
form of the dispersion law, the steady-state velocity acquired by the electron in crossed magnetic and
electric fields is independent of the dispersion law.

TIn some concrete cases, in particular for an isotropic dispersion law, the expansion of ¥¥Y can
begin with a term of the order v} (for Eka{' #ZIN{)

i
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?{Ni £ ZINi in Eq. (30) has a fixed value for a given metal, and it does not experience any quantum
i

oscillations.
If ?(Nf; = ZNf the expansion of o7 begins with y3 and therefore the expansion of ¥XY begins with a
i

a zero order term WX = /%, where
dlnd aN?®
S 12 k 12 ’
L1’12 —“OCO / Ek —5§o — Um / Qpo.

The expansion of the remaining elements in 2B results as before in equations of the form of Eq.
(34).

3. OSCILLATIONS OF THE RESISTIVITY

In experiments one usually measures not the electrical conductivity tensor §%8 but rather the spe-

cific resistivity tensor paﬁ = 0&13 . Consequently it is necessary to determine the oscillatory part of

pah.
The relation between the elements of the tensor p®B and those of 0B is defined by the well known
expression

0 = Do/ s ll, ol =det]| 3%, (39)

where Dy g are the algebraic complement of the elements of o0 @B in the determinant || o |.

Let us write @B = O‘OO‘B + Ac®B designating by Ac®B the oscillatory part of ¢®B, which, as is known,
represents a small quantum perturbation to o@B, Then, leaving only linear terms in Ag @B, it can be
easily shown.

51l =l 50l + Dagls* = || 5, || (1 4 piPAs=8) (36)

(we omit the sign for summation over indices which are to be taken in pairs from 1 to 3).
Similarly we find to the same degree of approximation

Dy = DS =+ eanigppgoe?Asle, (37

where €jk] is an antisymmetric unit tensor of the third rank.
By using Eqgs. (36) and (37), there follows from Eq. (35)

Dp® = (|| po Il Spuizapgat? — p28019) Asla, Ap=8 (H) = Agh* (— H), (38)
where
oo Il = det | 5@ | = [l o | -1,

It is evident from Eq. (38), that the equation for the oscillatory part of the electrical resistivity ten-
sor in the general case has an exceedingly cumbersome form. The expression for Ap®# retains the
classical value and the oscillatory parts, generally speaking, of all the components of ¢@B. Even in the
simplest cases Ap@®B retains some terms, which can have a single order of magnitude of amplitude and
various periods of oscillation. Simplification of Eq. (38) occurs only for certain special cases.

In particular, if there are boundary Fermi surfaces with non central cross-sections (it is obvious
that these always occur in even numbers, so that the cross-section which are placed symmetrically
around p, = 0 make equal contributions to the oscillation Ac®B), on which %% # 0, then, in magnetic
fields that satisfy the relation yy ~ 1, one need retain in Eq. (38) only those terms which contain Ag%Z,

The components of Apaﬂ in this case have the form

A = (1l po Il 337 — p57e5?) As#,8p%7 = (1l po || 55 — p3?pg?) s,
A = — (Nl oo Il 33¥ + pP¥p3?) Aa?2,  Ap*2 = — p%2p22A3%% (a = x, y, 2),
where AcZZ is determined by Eq. (28).

If the Fermi surfaces are all convex, one can calculate the asymptotic values of Ap®B in strong mag-
netic fields (yy <<1). To do this, just as was done in Sec. 2, one uses the asymptotes of the tensors o-oo’B
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[Eq. (29)] and paB (Ref. 4), which allow one to express the relative value of the oscillations of the spe-
cific resistance tensor in the following way:

dln S
Agesjpze = H 2,05 — L AMS. (39)
1

If ?(Nlt # ZN{ , the matrix @B has the form:
i

P11 ToPi2 P13
DP=|YoPa1 oz 3 |- (40)
P31 P32 P33

Expansion of the elements of the ¢,z matrix in powers of v, begins with zero order terms.

It can be shown, just as in the oscillations of the conductivity, that the relative magnitudes of the
oscillations of the elements, pXY is smaller by orders of magnitude (in terms of y;) than the relative
magmtude of the oscillation of the remaining elements in the paB tensor.

If %){Nk EN1 , the expansion of the element ¢*Y again begins with a zero order term in vy,, and the

expansions of the other terms in the &*8 matrix have the form shown in Eq. (40).

4, CALCULATION OF THE OSCILLATIONS IN SOME CONCRETE CASES.

In this section we will examine a series of simple cases, which permit simplification of the general
formulae for the oscillatory parts of the tensors o®B and paﬁ .

The relations for Ac®B are greatly simplified in the presence of a single conduction band with con-
vex Fermi surfaces. In fact, in Eqs. (26) and (27), we retain only one term and find

InNo) d1nS,,
s = 11 g+ 3 B e @

It is interesting to note that if g @B does not depend on € and p, the sum in Eq. (41) vanishes. This
means, that the oscillations of 0B and P @B for the case of a single conduction band with convex Fermi
surfaces depend on the functional relation between the mobility and € and p,.

To calculate the amplitude of the oscillations of Ao B and Apo‘B , whether there exist one or several
groups of electrons, it is necessary to know the functions x (€, pz), which can be determined only on the
basis of certain assumptions concerning the collision integrals.

If the collision integrals in the kinetic equation can be replaced by a “relaxation time” t;, which
generally depends on € and pg, then

¥*P = 2me?t h32 Re E 03,08, 2= 2met P (02 = 1/t 0¥ = m¥clet H; (42)

+zk

where vi are the Fourier components of the velocity of the electron.
In the isotropic case Eq. (42) becomes even simpler. Noting that for any isotropic dispersion law
€ = € (p) the relations p = m*v and v = Vpe* are satisfied we have

L5 9 = etty 2 S(epy) = erty v S(ep)
S W T4y m* 8 B T4y m*

(43)
(F=0=xy2), xF=2% ”",Zz S (:p2) = = (p* (5) — P2,

where p =p (¢) is an inverse function of e =X (p).
From Eq. (43) and from the definition of the mean value of the “classical mobility tensor [Eq. (11)],
with the assumption that f{ (¢) can be approximated by a §-function, it follows that:

g7 =g = o/ (1 4+ 0™13), ¢ = o™togy/ (1 +0™t5), ¢% = qoeto/m*, ¢= =% =0, ty=1,(%), (44)

*In the isotropic case v = (8 /0p)p/p and from the expression S(e, py) = 7 (p? (€) — p?) it follows that
*=p (9p/d€) = p (8¢/3p) so that p = m*v.
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where, as above, w*= eH/m*c.
Furthermore, from Eqs. (12) and (19), using Eq. (43), we find that

x oy 2 ;3_‘3 —_—
G ) =%+ L% @Bz gm=g. (45)
We will now apply Eqgs. (44) and (45) to an examination of two models.
(1) One Conduction Band
If there is only one conduction band, when
01nN°/oCy = 3m*/p? (L),
the oscillating terms of Ag®PB have the form
oo L @ : . _ 2 o
Aot = — 5 H e  AM® (wp2,2); Ac* = - H G AME, (46)
where an is determined from Eq. (44).
In strong magnetic fields (y << 1) all the elements of an and their derivatives can be readily ex-
pressed in terms of gy, and we find*
Aoxx _ A =_1_H01n 90 AM? Ac*Y =__2_72Haln 90 AM? Ac”:_Z_ dlng, Am*
o cg}' 3 0% Ny’ c(’)"}' 0% Ny ’ Ll 3 0 Ny (47)

The expression for the oscillatory parts of the magnetic moment AMZ in the case of an isotropic
dispersion law can be found from the general equations,® in which one should substitute

Sm () = 7p* (%), dSm/d = 2=m®, |02S/0p2| = 2x.

Using o‘&"ﬁ = Noan , and also Eqgs. (38) and (46), we can calculate the oscillations of the specific
resistivity tensor

* 9g** * X w* a3 *
{(1_w2tg)aiC; 20*t, ,}AMZ Apy—a——{(l-{-B 2t2)"T—2mt0 }AMz

0 1

H
Ap** = Apy¥ =
p b 352

(48)
2H
Ag#* = {m o + }AMZ
30‘0
where oy = Nge?ty/m* is the conductivity of the metal in the absence of a magnetic field.
In strong magnetic fields one can substitute w*ty >>1, which transforms Eq. (48) into
D™ Ap””=_1_H<9lnq0 AM? A 2Ha]nqné_/_l/l_ Ae** 2 dlngy AM?
oi* ol? 3 0% Ny’ olY % N, '’ ’ 0z - 3 0% N (49)

It should be observed that the relative magnitudes of the oscillations of Ac®Y/gy*Y, and also of
Ap*Y /pXY in strong magnetic fields in our case are smaller by two orders of magnitude of vy, than the
relative magnitudes of the oscillations of the remaining terms in the ¢®8 and paB tensors.

(2) Two Bands with N*= N~

Let us assume, that there are two groups of electrons having a quadratic dispersion law, for one of
which (1/2m) dSp/d{y = my >0 (electrons), and for the other (1/21)dSp,y/d¢y =— my <0 (holes), and
that N* = N-,

Symbolizing by q; the mobility of the electrons, and by q, that of the holes, it can be easily shown
from the general Eqgs. (26) and (27)

*If m* = m = const, then 8lnqy/8¢ = dlnty/d¢y and the expression for Ag*Y/gd® in Eq. (47) coincides
with that given elsewhere,5 where, however, there is a misprint in the numerical coefficient.



ON THE THEORY OF THE SHUBNIKOV-DE HAAS EFFECT 77

* Al (14 &2 s
e — % z
Ae e e @7 — ) + et 5) g = gy | M
__ 2 og;® 0g3®
+ [p. (q‘l"B —_ q;‘ ) + ”’3‘” l”’co 0&0 ( 3 I + l) =0 02 } AM;} ’ (50)

for a, B # z,z and

_ H 2, (04 9 = 09 og7
Aczz__(i+u)co{[”(q —¢%) —3 CO( Fouhtr o ”AM“’"[”(‘K 97 + 3 ”C"( — 5 )] AM; } (51)
where u = my/mj, and the mobilities are determined from Eqs. (44) in which one substitutes in the case
of the electrons m* = m,, and for the holes, m* =— m,.

For the extreme cases u >>1 or u <<1, one can leave out some of the terms in Egs. (50) and (51);
however, the general character of the expressions does not change.

Egs. (50) and (51) show that the assumption N+ = N~ does not introduce any fundamental simplifi-
cation of the general expressions for AcOB,
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The emission and absorption of light at high temperatures in a shock wave front in air are
considered. The dependence of the brightness of the shock wave front on its amplitude is
derived.

IN our preceding article!* we considered in a general form the problem of the internal structure of the
front of strong shock waves in gases, taking account of radiation. We operated throughout with integral
characteristics of the radiation — the total energy flux and density. Also, passing from the geometrical
coordinate to the optical thickness, we excluded from consideration the actual distribution of quantities
in space, which is determined by the coefficient of absorption of light in the gas. This approach is in-

*Hereafter referred to as I.



