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We consider various principles of operator arrangements as basis for a statistical inter­
pretation. An extremely concise expression for the distribution of trajectories in func­
tional space is obtained, using the action functional, for the case of the ground state. The 
bichronological arrangement in time is a Markov process, and a continuous distribution 
density is found for it. 

THERE ARE THREE STAGES in the probability 
interpretation of quantum theory. The first 

stage is the usual interpretation of the absolute 
square of the wave function as a probability den­
sity. The second stage is the search for a joint dis­
trib.ution for physical quantities, corresponding to 

. . . 1,2 If non-commuting operators, at a given time. we 
want to consider the evolution in time, it is not suf­
ficient to limit ourselves to a calculation of the 
change with time of these distributions. Moreover, 
it is of some general interest to study joint multiple 
distributions which correspond to different times 
and which take into account the correlation between 
states at different times. The consideration of such 
distributions f011ms the third stage of the problem 
mentioned at the beginning, and we shall consider it 
here from first principles. Thus the subject of the 
investigation of the present paper will be closely 
related to a paper by Feynman, 3 but in contradis­
tinction to the latter our work is based upon the 
idea that the shape of the distribution should follow 
simply from an accepted "principle of arranging" 
operators. This fact plays a systematic role, and 
makes it in particular possible to show a relation 
between the papers of Feynman 3 and Moyal 1 and 
also to indicate another possible space-time inter­
pretation. 

1. ·PRINCIPLES OF OPERATOR ARRANGEMENTS 
AND THEIR ROLE IN A STATISTICAL 

INTERPRETATION 

One can easily determine the probability density 
distribution w(a) of a physical quantity a corre­
sponding to an operator A, if one uses the quantum 
rule for averagi11g. For a given state described by a 
wave function 'Jir (or, more generally, by any matrix 
density) we have 

w (a)= (8 (A- a))== (o/, a (A- a) 'Y). (l) 

This definition is connected with the considerations 
that the usual statistical method of averaging 
J F (a) w (a) da should agree with the quantum aver­
age <F(A)). 

The evaluation of expression (I) can, of course, 
be reduced to calculating the averages of the ex­
ponential function or of powers, 

w (a) = 2~ ~ e-iai (eiAI) d! 

= 21 \ e-iai ~ (ilt <An> dl. 
~ j n. 

(2) 

The integral of the exponent can be interpreted as 
the integral showing how to treat the characteristic 
function <(exp (iAJ)). 

One can prove that expression (I) is non-negative, 
but this is not important for our discussion. The 
fact is that for a comprehensive statistical interpre­
tation of quantum theory (that is, for a consideration 
of joint distributions of quantities corresponding to 
non-commuting operators) one must apparently inev­
itably allow the possibility of local negative values 
of the distribution density, without this, however, 
leading to negative probabilities for integral opera­
tions which are connected to physical measurements. 
This should still be a small price to pay for the pos­
sibility to use for typical quantum phenomena the 
classical presentation and the usual probability 
theory. Unfortunately, the situation is to a large de­
gree still complicated because of the involved na­
ture of the distributions; we shall return to this 
below. 

The gen<eralization of Eq. (I) for the case of non­
commuting operators A1 , A2, ••• has the form 

but now the question arises In what order the oper­
ators under the average sign will act. The determi­
nation of this order in Eq. (3) is equivalent to the 
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determination of the order of operation of the oper­
ators in the characteristic function (exp i (A 111 

+ A2/ 2 + ... )) or in the compound moments 
(An, An,· • .). 

We denote by Pr any principle of operator arrange­
ment. To be precise, let Pr fix the coefficients 
c (i, ... , l) in the expansion 

Pr An,• .. Ans 

= ~c(i, ... , l) An1 ••• An1 (s = 2, 3 .... ) (4) 

for all possible permutations of the operators 
A (i, . .. , l is a permutation of the numbers l, .•• , s). 
These coefficients must satisfy the conditions 

~c(i, ... ,l)=l; c(i, ... ,l)>-0. (4a) 

The operators under the Pr-sign can be rearranged. 
The action on a function of operators is defined by 
the action on each term of its Taylor expansion. 

If we choose any one ordering principle Pr, we 
can use it to determine the characteristic function of 
a multiple distribution 

8 (/1, /2, ... ) 

= (Prexp i (A1f1 + A2/2 + ... )), (5) 

the distribution density ( Pr8(A1 - a1) 8(A2 -~) ... ), 

correlation functions etc., i.e., on the basis of this 
principle we can construct a complete statistical 
picture. 

The difficulty connected with the large number of 
possible choices for Pr is ~itigated by the fact that 
in actual cases one can show that there are only a 
small number of specific rules for arranging oper­
ators which should especially be preferred (because 
of symmetry, relativistic invariance, or other rea· 
sons). One cannot, however, attain a sufficiently 
simple principle, and one must take into account 
several "preferable" statistical pictures and their 
interconnection. We shall consider below separately 
the various cases of distribution principles and the 
distribution laws connected with them. 

The simplest ordering principle occurs if in all 
products An1 A"2 ••• one of the operators acts always 
either before or a:fter another, and on the right hand 
side of Eq. (4) there is only one term. One can then 
assign to the operators Feynman's index s (which 
is such that a smaller value of s corresponds to 
earlier action). 4 In particular, if we identify s with 
the time t, we shall have the chronological arrange­
ment Pr = P. The chronological arrangement leads 
to a simple result in the Heisenberg representation, 

when all the operators taken at one particular time 
commute (the non-commutability of the coordinates 
and the momenta is not taken into account as one 
can express the momenta as derivatives with respect 
to the coordinates). 

It is convenient to denote the reverse way of ar· 
ranging the operators (s = - t) by Pr = P*. An ad­
vantage of the chronological and antichronological 
arrangements is their simplicity and relativistic in­
variance; the disadvantage is that real functions of 
Hermitian operators will, generally speaking, corre­
spond to non-Hermitian operators. Also the proba· 
bility density corresponding to them is complex. 5 

One can avoid this defect by going over to the 
arrangement principle 

(6) 

Another corrected mode of expansion, which is 
also based upon the P and P* arrangements, can 
most conveniently be formulated by its application 
to the exponential function 

Pr(2) exp ~ AtUt 

= p• [exp ~ S Atut]P[exp ~ ~ A 1u1]. (7) 

A natural generalization of this arrangement prin­
ciple is given by the equation 

Pr<2n) exp ~ AtUt 

{ • [ 1 J [ 1 '}n (8) = P exp 211 S Atui P exp Zn ~ Atui J . 

In the limit n --. oo we get the completely symmetri­
cal ordering 

Pr(s)exp L AtUt = exp ~ A 1u1• (9) 

From Eqs. (7) to (9) one can determine the opera­
tion of Pr on other functions, fer instance by differ­
entiating with respect to Un1, Un 2, ••• , and subse­
quently putting these arguments equal to zero we 
can find Pr An1An2 • ••• 

Below we shall consider the distributions and 
characteristic functionals, which we shall mark by 
an index in brackets, corresponding to the above 
forms of arranging operators. 

The symmetrical arrangement (9) is convenient for 
c~nsidering linear transformations of operators. It 
was used in Ref. l for a statistical interpretation of 
quantum states at a fixed time. By applying it to 
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the coordinate and momentum operators one obtained 
in that paper the Wigner distribution, which could, 
howe\fer, equaHy easily have been obtained from the 
P (2) 

r arrangement. 
Among the ordering principles, (7) to (9) introduced 

by us the hic_h1·onological principle Pr( 2l, which we 
shall denote by R, plays a special role as it is hi­
linear in P, just as the quantum average value is hi­
linear in the wave function. For a state described 
by the vector t/J, the characteristic functional 
<R exp fA (t) u (t) dt) is the absolute square of the 
vector P[exp JAudt/2] t/J. As a counterpart toR we 
have the principle R 1 corresponding to a character­
istic functional E>(R') which is the square of the 
vector P* [exp J Au dt/2] t/J. In the majority of cases 
e<R'J and 8( R) are connected according to the equa­
tion e<R'l[u (t)] "'@(Rl[u (- t)]; this equation is satis­

fied as long as for at least one time t and one repre­
sentation the matrix elements of the operators A (t), 
of the energy Emd of the state operator p are real. 

2, THE CASE OF LINEAR EQUATIONS 
OF MOTION 

Let us consiider a different type of distribution 
corresponding to the above mentioned ordering prin­
ciples, for instance, the case of quantum systems 
subject to linear equations of motion, i.e., systems 
for which the Lagrangian depends linearly and quad­
ratically on the dynamical variables q [in the case 
of many discrete degrees of freedom q = q10. q2 , ••• ; 

in the case of fields q = cp (x )]. 
In field theory this case corresponds to free fields, 

which we assume to he boson-fields. Under those 
circumstances the commutators of the dynamical 
variables are c-numhers which simplifies matters 
considerably. The fact is that if repeated commuta­
tors of A and B vanish the following formulas hold, 

the hichronological one. Furthermore, in those 
cases q (t) is expressed in terms of the initial oper­
ators q(t0 ), q' (t0 ) by means of the s~me linear 
transformations as in the classical case. If we sub­
stitute this expression into the exponent < exp 
J qudt > = e<sl [u], we see that e<sl[u] can he ex­
pressed in terms of the symmetrical initial charac­
teristic function by classical means. Expressed dif­
ferently, if we start from a Wigner distribution, the 
time evolution taking into account all multiple dis­
tribution laws will not differ from the classical one. 
As far as the momentaneous distribution in phase 
space is concerned, this fact was noted in Ref. l. 

Let us consider the correlation function 

kqq (t, t') = <Pr q (t) q (t'))- (q (t)) (q (t')). 

Symmetrizing the integral in the exponent (ll) we 
find 

k(P) (t t') = k(s) (t t') 
4Q ' ljq ' 

+ ~ sgn (t'- t) [q (t'), q (t)]. (12) 

Other correlation functions k(n) q (n = 3, 4, ... ) 
(higher semi-invariants) are the same for P and Pr(sl. 

The results obtained here can directly he general­
ized to the case of free quantum fields correspond­
ing, for instance, to a Lagrangian 2L = cp"-cp1_-m2 cp2 • 

Also we must substitute cp (x) for q (t) in ( ll) and 
(12) and take into account that 

e (x', x) [cp (x'), rp (x)] = 2inb. (x', x) (c = 1) .. 

Some initial distributions will give a relativistically 
invariant correlation function 

k~J (x, x') = kb. (I) (x, x'); k<{J = kb. <I> + inK, 

(13) 

(10) where ~ (1) and ~ are the well-known singular func­

tions. If these initial distributions are also normal-
By applying these formulas several times we are 

able to find tqe following correlation between the 
characteristic functionals <.Pr exp f qudt) for the 
trajectory q (t) corresponding to the principles P, R, 
p/sl 

' 
0(R) [U (f)]= EJ(s) [u (f)] 

1 •• 
= E)(P) [U (f)] exp "'[ \ ~ [q (f), q (t')] dt dt' (ll) 

t' .A 

Thus for the case of linear equations of motion the 
symmetrical arrangement gives the same result as 

ized.we have 

e(s) [u (x)] = exp ~ ~ ~ b.(l) (x, x') u (x) u (x')dxdx'. 

(14) 

The ground state corresponds to k = 1;;/2 and 

~-lk(P) _ _i_ A(l)+t'A _ AF 
n 9'1'- 2 L.l. . L.l.- L.l. • 

Having taken the integral inversion one can cal­
culate the distribution densities w(s) and w(P) of 

various multiplicities, including continuous ones. 
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The distribution in functional space for the case of 
the chronological arrangement is ciosely connected 
to Feynman's Lagrangian form. We give as an ex­
ample the probability functional w(P) [q(t)] for a 
finite time interval 0,; t,; T in the case of a har­
monic oscillator having a normalized distribution 
and a correlation function 

kr:;> (t, t') = k COS()} (t- t')- 2~w sin (J} It-t' 1. 
(15) 

The dispersion k of the coordinate fluctuations is 
connected withe (which is the absolute tempera­
ture multiplied by Boltzmann's constant) through the 
relation 2kmw = 1i/ tanh (1iw/2®). Defining 

a= mw/tanh (wT + inw/®); 

b = mw/ sinh ((J)T + inw/®) 

the result of the calculations is in the form 

w~~> [q (t)] 

(16) 

- N-1 i ( n~1 m<- r (q(ti+1)-q(ti) )2 
- expit\ p T <- (17) 

J-0 -

- (J}2q2 (ti) J-T [q2 (0) + q2 (T)] + bq (0) q (T)}. 

The sum in the exponent in ( 17) is the action in­
T-• 

tegral ~ L [q (t-!-s), q (t)] dt. Equation (17) is the 
0 

Lagrangian form of the thermodynan1ic Gibbsian 

quantum ensemble cooresponding to a temperature e. 

3, THE CHRONOLOGICAL ARRANGEMENT 

IN THE CASE OF ARBITRARY EQUATIONS 
OF MOTION 

When the equations of motion are nonlinear, the 
commutator [q (t), q (t')] will be a e-n umber only in 
first order in t- t' (the operator supplement is pro­
portional to (t- t' )2). In the nonlinear case, there­
fore, the results of the previous section are correct 
for small time intervals to the first order in their 
duration. This is sufficient to conclude that the 
Wigner distribution for q (t), q (t) follows equally 
easily from the R as from the p/sl arrangement. 
However, to determine the distributions involving 
considerable time intervals we must put our consid­
erations upon a new basis. To begin with we restrict 
ourselves to the chronological arrangement. 

1. We try to determine the density w<P) (q (t1}, ••• , 

q(tn)) of the joint distribution of the coordinates at 
the times t 10 • •• , tn• If to be definite we put 

tn > ... > t1 .we have 

(18) 

where 'I' is the state vector in the Heisenberg repre­
sentation. We choose as a basis the eigenvectors of 
the operators q (t). If we go over to a new represen­
tation we write Eq. (18) in the form 

w<Pl (q1 , ••. , q n) = ~ · .. ~ '¥* (q~, tn) o (q~,- qn)U (q~, t n; q~_1 , tn-1) ... o (q~- q1) '¥ (q~, t1) 

xdq~ ... dq~. (19) 

where qk = q' (tk), 'l'(q' (t), t) = (q' (t) I) is the state 
vector in the q (e)-representation, and U (q" (t1 ), t1 ;. 

q' (t), t) = (q" (t1 ) I q' (t)) is the unitary operator 
U (ttt. t) of the transition from one time to another. 
After integrating we have 

w<Pl (ql, ... 'qn) 

= '¥* (qn' tn) U (qn' tn; qn-1' tn_)' ·' 

... u (q2, t2; ql, t) 'Y (ql, t )· 
(20) 

Dividing the segment (0, T) into increasingly 
smaller sections by the points tk = 8k ( 8 = TIn) we 

can make the transition to a distribution in funct­
tional space. As shown by Feynman, 3 we have 

U (q (t'), t'; q (t), t) = const ~ ... 
t'-• f'-• (21) 

~exp { ~ ~ L [q (t + s) .• q (t)] dt }dt fl dq (t), 
t ~· 

where t' > t, and where L [q(t + 8), q(t)] is the 
Lagrangian in which we have replaced q (t) by [q (t 
+ s)- q(t)]/s. By virtue of (20) and (21) the func­
tional probability for a trajectory q(t) in the interval 
(0, T) will have the form 
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T-e 

w~~> [q (t)] = N-1o/• (q (T), T) exp { ~ ~ L [q (t + s), q (t)]dt} o/ (q (0), 0). (22) 

The nonnalizing factor N has a direct meaning only 
for the final subdivision. 

2. The operator (21) can, as is well-known, he 
written in the fonn 

u (q', t'; q, t) 

= ~ 'fn (q') exp {- ~ (t'- t) En}·~~ (q). (23) 
n 

where I/Jn is the eigenfunction of the energy operator 
H corresponding to an eigenvalue En. We now take 
in (21) and (23) the limit t' - t-> oo; strictly speak­
ing, the operator U is not defined in that limit. To 
he able to go to the limit we replace H. by 0- ip.) H 

0 

where i{L is small and imaginary. This change corre­
sponds to replacing the Lagrangian L = T - U by 

.LP. =~ (1- ip.f! T- (I- ip.) U-:::::::; L + ip.H, (24) 

which expresses the assumption of weak disf.lipative 
effects. After this substitution En goes over into 
0- i{L) En and we have 

Up.(t'-t)-7'fo exp {- ~ (t'-t) Eo}'f~ 

for t'- t --'HXJ. 
(25) 

In agreement with equations (21) and (25) we can 
write for the wave function of the ground state 

1-e 1-e 

ofo (q (t)) = N-'J, ~ ... ~ exp { ~ ~ L [q (t + s), q (t')] dt'} fi dq(t). (26) 
-oo 

where the lower limit rl = - 00 must he understood in 
the following sense: first of all we replace L by L 1-1-

while rl .is still finite; after that we let rl go to - 00 

-oo 

simultaneously changing the coefficient N" '/, which 
.depends on T1 and q (T1 ); finally we let fL-> 0. In 
Ref. 6 a different fonnula was used, 

I 

'f 0 =const;~~ ~ ··· ~exp{ -i-}ndq(t)(Sr= J Ldt'). (27) 

If the factor is properly chosen the function % will 
he the action function as can he seen, for instance, 
from Eq. (27). If we take this into account and substi­
tute (26) into (22) we are led to the conclusion that 
in the case of the ground state the distribution 

w~~>[q] for the trajectory q(t) in the interval [0, T] 
00 

is equal to the integral of exp ~ ~ L dt over the 
-(X) 

trajectories outside that interval. Hence it follows 
naturally that in the case of the ground state the 
"complete" distribution density for trajectories along 
the infinite lint~ - oo < t < oo is equal to 

0) 

w<P> [q (t)] = N-1 exp { ~ ~ L [q (t)] dt}, 
-co 

co 0) 
(28) 

( N = ~ ... ~ exp { ~ ~ L dt} IT dq (t)) 
-oo -co 

This result in its conciseness reminds us of Gibbs' 
formula for the thermodynamic equilibrium distrihu-

tion at one definite time. However, Eq. (28) in­
cludes a narrower of phenomena, as it refers only to 
the ground state which in thermo-dynamic language 
corresponds to the abs~lute zero. One can go over 
from the complex distribution (28) to the action func­
tional probability corresponding to the ordering prin­
ciple (6), 

0) 

w<1> [q] = N;1 cos { i ~ L [q] dt}, (29) 
-co 

4. JOINT DISTRIBUTIONS FOR P AND P* 

TRAJECTORIES 

l. If we take into consideration the functional 

A [u (t), v (t)] 

= <p•(exp ~ q (t) v (t) dt)P (exp ~q (t) u (t) dt)), 

(30) 
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we can use it to write for the characteristic func­
tionals for the ordering principles P, P*, and R, 

8(P) [Uj = 8 [U, 0]; 8(P*) [U] = El (0, u]; 

(R) ::. [ u u] 8 [u] = b 2 , 2 . (31) 

The functional (30) will be interpreted as the char­
acteristic functional < exp f (ru + sv) dt > of the 
joint distribution of P-trajectories r(t) and P*-tra­
jectories s(t). If w[r(t), s(r)] is the density of this 
joint distribution, one can according to equations 
(31) obtain from it the distribution density of q (t) for 
the different arrangement principles, 

w<Pl [q (t)] = ~ ... ~ w.[q (t), s (t)] I1 ds (t); (31) 

w<P*l [q (t)] = ~ •.. ~ w [r (t), q (t)] I1 dr (t);(32) 

w<RJ [q (t)] 

= ~ ... ~ W [ q (t) + cr it); q (t)- cr it)J I1 dcr (t). 
(33) 

These formulas express the fact that in order to find 
the distribution of P-trajectories one must take into 
account the P*-trajectories and vice versa, and also 
that the a-trajectories are equal to (r(t) + s(t))/2, 
i.e., are the mean of the P- and the P*-trajectories. 

By approximately the same methods as used to ob­
tain (29) and (31) one finds easily for a chosen in­
terval [0, T] 

w0r [r (t), s (t)] = lr1 o (r (T) 
T-r. 

- s (T)) exp { ~ ~ (L [r (t + s), r (t)] (34) 
0 

- L [s (t + s), s (t)l) dt} tjJ (r (0), 0) tjl• (s (0), 0). 

Hence the distributions (32) and (33), and also w< l) 

are obtained by integration. 
2. The formulas found in the previous section are 

closely connected with the results of Refs. 3 and 7. 
However, it is impossible to consider the concepts 
of the present paper to be the same as those of the 
above mentioned papers. We can illustrate their dif­
ference, for instance, by calculating the probability 
W that in the interval [0, T] the trajectory q(t) shall 
lie within the limits a(t) ~ q(t) ~ b(t). In the classi­
cal theory this probability is equal to 

T b (I) 

W=(IT ~ o(q(t)-x(t))dx(t)). (35) 
o a (t) 

In quantum theory the q(t) are operators and one 
must in Eq. (35) indicate the order of their arrange· 
ment, 

T b (t) 

W = ( Pr 11 ~ o (q (t)- x (t)) dx (t)) (36) 
Q a (t) 

Different principles Pr give, generally speaking, 
different probabilities. According to (32) and (33) 
the principal ones of these are equal to 

b (t) co co b (I) 

w<1>= ;-{~···~~···~+~···~~···~}wrr, s]oras; 
a (I) -co -co a (I) (37) 

b (t) co 

w<2>=~ .. ·~~ .. ·~w[q + ~' q- ~Joqocr (ox=I1dx(t)). 
a (I) -co 

These quantities differ in the limits of integration 
from the quantity 

b (I) b (t) 

W=~···~~···~w[r,s]oros, (38) 
a (I) a (t) 

which was indicated in Refs. 3 and 7 and which re­
presents the absolute square of the probability of 
the event considered. In our opinion expression (38) 
cannot be interpreted as a probability since there 

exists no arrangement principle ordering Pr such 
that expression(38) would follow from equation (36). 
Expression (38) is thus not connected with any com­
plete statistical picture. 

5, STATISTICAL INTERPRETATION BASED 

UPON THE R-ARRANGEMENT 

l. Processes of time evolution described by the 
distributions w<P) [q (t)], w<P •) [q(t)] are Markov 

processes, i.e., the joint distribution den~ity of the 
values q (t1), ••• , q (tn) can be written in the form 

W (q (f1), ••• , q (tn)) 

= V (q (tn), fn; q (tn-1), fn-1) · · · 

... v (q (t2), t2; q (t1), t1) w (q (tl), t1). (39) 

Indeed, Eq. {39) agrees with Eq. {20) if we put 
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w (q, t)= ty• (q, t) tp' (q, t); v (q', t'; q; t) = ~. (~: ~? u (q', t'; q, t). 

Unfortunately., the Markov transition probability V turns out to depend on the chosen state 'I'. The arrange­
ments Pr(l) and R do not lead to Markov processes, even in such a sense. However, the R arrangement 

corresponds to a "Markov process with derivatives", i.e., the transition from a pair of values q (t), q (t) to 
the same pair at a different time is a Markov process. Expressed differently, evolutiop in phase space is 
a genuine Markov process (with a transition probability independent of the state). To see this we consider 

the joint R-distribution of the quantities q(t1 ), q(t1 .+ e:), q(tJ, q(t3 + e:), ••. , q(tn + e:) which we obtain by 
writing expression (33) in a discrete version instead of in a continuous one. It has the form 

~ · • • ~ U (q~, qn + 't) U* (q~, qn- "n) U (qn + "n' q~-1 + "~-) 
u· ( ' ' ) u ( ' + ' + X qn- "n' qn-1- "n-1 qn--1 "n-1' q;;_1 "n'-1) 

XU* (q~-1- "~-I' qn-1-"n-1) · · · U (q2+ "2' q~ + -r~) X U*(q2- 72• q~- 't~) (40) 

x u (q~ + 't~, q1 + \) u· (q~- 't~, ql- "1) R (ql +"I' q1- 't1) 

22n-l d-r1 ... d7n d't~ ... d-c~--1• 

where qk = q(tk)' q~ = q(tk + e:), -r k = ak /2, R is the density matrix, U(qk, q~_ 1 ) = U(q(tk)' tk; q(tk_ 1 + s), 

tk_ 1 + e:) is the operator (21). 
Taking it into account that for small values of 8 

(41) 

(42) 

)( exp{ ~: (q~- qi) (a~~ cr) }R ( q1 + :1 , q1- : 1) dai ... dcrndcr~ .,. dcr~-I· 

The last expression splits into a product of functions. Since the Jacobian of the transformation from 

to the quantities 

(t ) • (f ) (f ) '(t ) (q' (f) = q (t + El- q (t) )\ q l•q l, ... ,q n,q n - ¥ 

is equal to e:"'n the density of the distribution of the latter quantities differs from expression (42) by that 
factor and is equal to 
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where 

(44) 

K ( ' . ' .) m \\ { im (.' ' • )} u ( ' a' a) u· ( ' a' a\ d ( ) 1'1 q,q;q,q =~7t"li~.)exp -T qa-qa q +:r• q+;r q -"2, q- 2 ) ada' 45 

are the corresponding Wigner distribution and Markov transition probability. Thus the evolution process 
is actually a Markov process in the case of the R arrangement. 

The function (45) was considered by Moyal 1 as the operator defining the time evolution of the momen· 
taneous distribution law (44). In particular, he derived a differential equation for it. We note that Moyal's 
statement that this evolution process is a Markov process is in his paper only a hypothesis inasmuch as 
the multiple distribution laws do not follow from the evolution of the momentaneous distribution law. As 
we have just shown, this hypothesis is _justified for the R-arrangement of operators, but just for the Pr( s) 

arrangement, which was used by Moyal as a basis to derive the Wigner distribution, it is not justified. 
2. In many cases the integral (33) can be obtained from expression (34). A number of these cases cor­

respond to quantum fields with localized interactions described by the usual form of the interaction 
Lagrangian. We consider as an example the relativistic case of the interaction of a neutral with a charged 
field. For the sake of simplicity we assume both fields to be scalar. Let the Lagrangian be of the form 

The generalization of equations (33) and (34) for the case of the distribution of these fields within a 
four-dimensional region M is given by the equation 

w<R> (cp (x), ~ (x)] = N-I ~ ... ~ exp { ~ ~ dx ( L [ cp+ ; , ~ + i J 
M 

- L [ cp- l, ~- t ])} fi d~ (x) d"' (x) d"'* (x). 
M 

(46) 

(47) 

We have in this .equation not written out explicitly the boundaries of the region M. From Eq. (46) we get 

F (x)-:::::.:::. L [(/) + l w + 2LJ- L [co- i w- 2] =(!)AI:,- 11.2(!)~ + gw*wc ' 2 ' ' 2 T 2 ' I 2 ' .,._ r ' ~ . I ' . (48) 

+ "~~~"- m2"1*~ + gcp"'*t\> + f""':;.- m2~*"1 + gf"' + ! g~"'·"i· 
We subdivide the region M into cells of size t':.i, containing the points xi. We replace the integral in the 
exponent in expression (47) by the sum ~ F (xi) t':.i, where F (xi) is defined by expression (48) in which the 

derivatives eA' 1Jf,. are represented by the differences of the values of the e(x), 1J(Xj) in neighboring cells. 
After substituting this expression into the sum we combine all those terms in the exponent which contain 
the same variables e (xi), 1J (xi), and we get 

~ .. · ~ exp { ~ ~ F 1Ll 1} n d~1 d"'1 d"'; = n ~ exp i {oc1~1 + ~;"11 + ~1"1; + 1/,"1;"1 1}d~1 d"'1 d'Y)j, (49) 
I I 1 

where 
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!J.I !J.. 
r:l.j = T [O tp- f12 Cfl + g~f~lx-xj; ~~ = ti-l [(O- m2 + gcp) ~lx~Xj; 

r1 = b..1 j4h; ~, = ~ (x), "f/i = 'll (xi). 

The factors on the right hand side of (49) refer to those cells which are not near the boundary of the re­
gion conside1·ed. We have not written out explicitly the factors referring to the cells on the boundaries as 
they are more: complicated. Integration over 71 1 and 117 in (49) means integrating both the real and the 
imaginary part from - oo to + oo, Let 71· = p + ia; {3. = p1 + iai;. one can take each factor of the integral sep-

' I arately and we obtain 

where /0 (x) = J,(ix) is a Bessel function of the second kind. We have thus 

w<R) [cp (x), 1\J (x)] = N;-1 II /0 (2 (o:j~;~j I r/1') 
j 

= N-;1 [ exp {21i- ~i ~ [O cp- p.2cp + g~· ~]'I•J (O- m2 + grp) ~I z (x) dx}Tz>. 
(51) 

In this equati[on( 2 ) indicates a symbolic square defined by the equation 

(52) 

so that 

If we write out in detail the factors in Eq. (51) referring to the interior points of the region we get in 
the limit 11,~~ -+ oo the "classical" form 

II a (Ocp- p.2cp + gf~) a ((0- m2 + grp) ~) 0 (compl. conj.)' 

(o (o: + i~) o (o:- i~) =o (o:) a(~)). 

It is well known that one obtains the "classical" basis of evolution not only as li ... 0, but also in the 
case of linear equations of motion (Sec. 2). 

6. CONCLUDING REMARKS 

We shall make several remarks about the connec­
tion between the statistical interpretation just de­
veloped and well-known methods of relativistic field 
theory. 

l. Let A (x) stand for all field operators (for in­
stance, cp, t/J) and let L [A] he the corresponding 
Lagrangian. For each arrangement principle there is 
for a given complete statistical picture a correspond­
ing characteristic functional E> = (S) where 

S = Prexp {i ~A (x) J (x) dx}. 

We remember that in the classical case [commuting 
A (x)] we have for every F [A] 

F La/(x) J S = F [A (x)] S. (53) 

In quantum theory the operation of F[a/io](x)] on S 
gives Pr{F[A] Sl which, generally speaking, is dif­
ferent from F[A] S. We shall get a formula very sim­
ilar to the classical expression (53) in the case of 

the P (and P*) arrangement. In this case after "dis­
entangling" from P {F[A]Sl the exponential factor4 

we shall have 
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F [ojioJ (x)] s = F [A (x)] s, (54) 

where A (x) are the operators "in a different repre­
sentation," more precisely the operators whose evo­
lution is described by the Lagrangian L [A] + AJ 
(we put 1i = 1). 

If one considers that the addition of A] describes 
external sources, the fields A (x ), which evolve 
without sources, will be operators in the "interac­
tion representation" (with respect to the "interac­
tion" A]). Also S will be the "scattering matrix" 
describing the action of external sources. The char­
acteristic functional E> in the P-arrangement can 
thus be interpreted dynamically as the probability 
amplitude for a W - W transition under the action of 
external sources. 

If F1 L4 (x)] = F2 [] (x)] is the equation of motion 
of the fields with sources, then in virtue of (54) we 
can go over to the following equation for the charac­
teristic functional describing fields without sources 

F 1 [o J ioJ(x)] H = F 2 [J (x)]8. 

Equations of this form were used in Ref. 8 to derive 
Feynman' s Lagrangian form and in Ref. 9 to derive 
Schwinger's equations. Our aim was to draw atten­
tion to the fact that El (Z in the notation of the above 
mentioned papers) can equally well be treated as a 
characteristic functional. 

2. We define generalized moment and correlation 
(cumulative) functions by the equations 

I 1 ll ll 
tnn (x1, ... , Xn I J) = 0 io! (x1) ... io! (xn) 8; (55) 

I 0 ll 
kn (x1 , •.• , Xn J) =ill! (x1 ) · · · ill! (xn) In 8. (56) 

The usual moment and correlation functions are de­
fined analogously, but after performing the differen­
tiations one puts] (x) = 0. The difference between 
the functions (55) and (56) for J =f. 0 and the usual 
ones is essentially that the probability functional 
w[A] which describes the field distribution, is re­
placed by a new functional 

exp (i ~A.! dx) w [A] j~ exp (i ~A.! dx) w [A] oA, 

for which expressions (55) and (56) are the usual 
moment and correlation functions. The formulas in 
which expressions (55) and (56) occur will thus have 
the usual form. 

In view of this all we see that the distribution 
functions introduced by Schwinger 10 for the general 

case when external sources are present are nothing 
but the correlation functions (56), and some equa­
tions involving then can be explained in a trivial 
manner. For instance, a formula typical for Ref. 10 
of the form 

o <A (x')> o2 In(-) , 
iol (x) = iol (x) ioJ (x') = <P A (x) A (x )) 

-<A (x)) (A (x')) 

is essentially an elementary formula from correlation 
theory 

k2 (x, x') = tn2 (x, x')- m1 (x) m1 (x'). 

3. Let the Lagrangian L be the sum of the 
Lagrangian of free fields L0 and an interaction 
Lagrangian L j• The ground state <1>0 of the free 
fields and the ground state 11'0 of the interaction field 
correspond to different P-distributions (28), namely 

00 

-00 (57) 
00 

w<Pl [A] = N-1 exp {i ~ L dx}. 
-co 

Hence we have 

Integrating over all w means averaging over the 
state 11'0 and over all w0 averaging over the state <I>. 
Taking this into account we can go over to the quan­
tum mechanical average, and if we furthermore com­
pare expression (58) with itself, but with F = 1, and 
use the result, we get 

('¥~ PF (A) '¥0 ) = (¢6 P (F [A] S) ¢ 0)/50 ; 

So= NJNo 

= ~ exp (i ~ L dx) oA j ~ exp (i ~ L0dx) oA. 

(59) 

In this equation 50 = ( <I>cfS<I>0 ), and S is the scattering 
matrix produced by the interaction L1. Thus the use 
of the distribution (57) makes it easier to derive the 
relations connected with the interaction representa­
tion. 

We note that from equation (26) apr,lied to 11'0 and 
<l>0 we can derive the relation W0 = N(!N-Y. S(O,- oo) 
<1\, which forms the contents of Cell-Mann and Low's 
h ll . . . . . . 

t eorem; 1n our opm10n It 1s necessary to mtro-
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duce into L 0 and L an infinitely small dissipation in 
order to prove this theorem (Sec. 3). 
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An expression has been obtained for the surface impedance of metals in the infrared re­
gion without making any special assumptions concerning the law of dispersion of the con­
duction electrons. 

l IN THE OPTICS OF METALS the most inter­
• esting region, it seems to us, is the infrared 

region in which the frequency of the electromag­

netic field satisfies the condition 

(1) 

Here v0 = 1/ -r is the collision frequency ( -r is the 

relaxation time), and Ct.!a is the limit of the internal 

photoeffect. * As shown in Ref. 1, for low temper­

atures and for pure metals this region is known to 

be essentially: v0 "" lOu, Ct.! a "" 1015 to 1016 • Thus 

we talk of working at wavelengths on the order of 
ten microns. 

In this frequency region the electron gas is ap­
proximately described by the dielectric constant 

s = 1 - 4rrNe2 j mw2 (2) 

where N is the density of free electrons and m the 

*The internal photoeffect which is due to the interac­
Hon of electrons can occur at all frequencies; however, 
it principally occurs only for Ct.J > Ct.!a (7iCt.Ja is of the order 
of intervals between energy bands, "v I0-12 ergs). 

effective mass.* In other words, the electron gas 

"behaves" like an electron plasma. 

Since nz"' 4rrNe2/m "" Ct.J~, then in the frequency 
region of interest to us the dielectric constant of 

the metal is negative (c; < 0), and, its modulus is 

considerably greater than 1, i.e., 

The reflection of light from the surface of a metal 

in this case is, in principle, not connected with the 

ohmic loss and can be described by a purely imag­

inary surface impedance 

*Note that according to the opinion of Ginzburg (cf. 
Ref. l) we put in formula (2) the mass of the free elec­
trons. All resultant changes in N I m are due to the 
change in the electron density N. This, of course, can­
not lead to contradiction, but, it seems to us, causes 
trouble in comparing optically measured constants of the 
electron gas with results of other experiments (galvano­
magnetic, specific heat, etc . .). Moreover, if the calcula­
tion is carried out with the use of the kinetic equation, 
it is natural that in formula (2) there should appear pre­
cisely the effective mass (see below). 


