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Diffuse scattering of x-rays and thermal neutrons by composition and order fluctuations 
in solid solutions is considered. For disordered solutions and ordered solutions of AB 
stoichiometric composition the calculations have been carried out taking into account in­
teraction between atoms lying in coordinative spheres separated by arbitrarily large dis­
tances. A method is indicated for the determination of the ordering energy for various co­
ordinative spheres from the experimental distribution of the background intensity. Anom­
alously high diffuse scattering near points of phase transition of the second order and near 
critical points on the decay curve is considered. 

T WO TYPES OF APPROACH are possible in the 
investigation of scattering of x-rays and of slow 

neutrons by solid solutions. Usually in calculating 
the intensity of scattered radiation the interference 
pattern formed by secondary waves scattered by var­
ious atoms is first obtained for a given configuration 
of atoms at the various lattice points, and then an 
average is taken over the various possible configu­
rations (see, for example, Refs. l-8). In this ap­
proach the intensity of scattered radiation turns out 

to be expressed in terms of the correlation parame­

ters for the occupancy of the different lattice points 
by atoms of a given kind. The formulae obtained in 
this way are convenient for calculating the intensity 
of scattered radiation when the distant order and the 
correlation parameters are known, and also for the 
solution of the inverse problem, that of determining 
the correlation parameters from the distribution of 
intensity of diffuse scattering as given by experi­
ment. However, as a result of the fact that the cal­
culation of correlation parameters for different co­
ordinative spheres as functions of the temperature, 
of the composition of the solution, and of parameters 
characterizing the interaction energies of the crystal 
is, as a rule, difficult, this method of investigating 
the scattering is less convenient for the determina­
tion of the intensity of the scattered radiation as a 
function of the quantities enumerated above. The 
dependence of the intensity of diffuse scattering on 
the temperature and on the concentration has been 

found for a one-dimensional lattice. For a three-di­
mensional crystal a calculation of this type has been 
carried out in the nearest neighbor approximation 

only for the case of high temperatures when the cor­
relation in the solution is not great. The very inter­
esting case when the temperature of the solution is 
of the same order of magnitude as the temperature 
of transition into the ordered state was not con­
sidered. 

Another method which was introduced by Einstein 9 

for treating the problem of light scattering is con­
siderably more convenient for the investigation of 
the dependence of the intensity of scattering on the 
temperature, on the composition and on the con­
stants of the interatomic interaction. The crystal is 
regarded as a periodic structure consisting of effec­
tive atoms which is responsible for the appearance 
of lines (or spots) on an x-ray photograph. Fluctua­
tions of composition and long range order which give 
rise to diffuse scattering of waves are superimposed 
on this periodic structure. The probability of fluc­
tuations depends in an essential way on the temper­
ature, on the composition and on the energy param­
eters and this permits one to relate these quantities 
in a simple manner to the intensity of diffuse scat­
tering of x-rays or of neutrons. This method was 
applied for the first time to the scattering of x-rays 
by Landau 10 who considered scattering by fluctua­
tions in the degree of long range order in crystals 
of molecular type near a point of phase transition of 
the second order. The scattering by solid solutions, 
which in addition to fluctuations of long range order 
also have fluctuations in composition with the cor­
relation between these fluctuations being important, 
was investigated by the present author 11 (this paper 
will he referred to as 1). In Refs. 10 and 22 scatter-
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ing was considered to be due to fluctuations extend­
ing over a large number of lattice constants, which 
permits one to carry out a phenomenological investi­
gation without making use of a concrete model for 
the crystal. However, in view of the fact that the 

x-ray wavelengths are of the same order as the lat­
tice constants, the above large scale fluctuations 
are associated with diffuse scattering through angles 
close either to the directions of Bragg scattering or 
to the incident beam. In order to find the intensity 
of scattering at arbitrary angles it is necessary to 
consider fluctuations whose dimensions are of the 
same order as the lattice constant. The calculation 
of probabilities of such fluctuations can no longer be 
carried out by means of the thermodynamic theory of 
solutions and a concrete statistical model of the so­
lution must be used which necessarily must contain 
a number of simplifying assumptions. At the same 
time the use of such a model makes it possible to 
relate the intensity of diffuse scattering to the con­
stants of the atomic interaction. 

In this pap•~r the intensity of the scattered radia­
tion is determined with the aid of the usual statisti­
cal model of a solid solution in which the energy of 
the crystal is represented as the sum of the interac­
tion energies of different atom pairs. Just as in I, 
the background associated with the geometric (sta­
tistical and thermal) lattice distortions will not be 
considered, i.e., only that part of the diffuse scat­
tering will be investigated which is determined by 
the distribution (which is to some extent random) of 
the various kinds of atoms among the crystalline lat­
tice points. The presentation will be given in terms 
of x-ray scatt«~ring. However, the results obtained 
will equally well apply to the scattering of thermal 
neutrons if in place of atomic factors for the scat­
tering of x-rays one substitutes the neutron scatter­
ing factors averaged over the isotopes and takes into 

account the fact that in addition to the background 
considered he1re there exists in the case of neutron 
scattering a background associated with the random 
distribution of isotopes and with neutron scattering 
dependent on nuclear spins (see, for example, 
Ref. 8). Although the solution model used here is a 
very approximate one the method developed below 
may also be applied to more accurate models when­
ever they might be introduced. 

1. GENERAL EXPRESSION FOR 1H E INTENSITY 
OF SCATTERING BY A SOLID SOLUTION 

Almost all the known solid solutions of metals 
have in the disordered state crystalline lattices in 

which the elementary cell contains only one atom. 
A lattice of such type may be decomposed into n 
geometrically identical sublattices similarly situated 
with respect to each other (containing lattice points 
of a given kind) in such a way that each atom inter­
acts only with the nearest atoms of other sublattices 
and does not interact with atoms at lattice points of 
its own sublattice. By choosing a sufficiently large 
n one can take into account the interaction with 
atoms situated in distant coordinative spheres. 

The distribution of atoms among the lattice points 
of the binary solution A- B may be characterized by 
the set of quantities PAis equal to unity or zero de­
pending on whether the sth point of the ith sublat­
tice is occupied by atom A or B respectively. Within 
the framework of the kinematic scattering theory the 
intensity of scattering of monochromatic x-rays by a 
single crystal with a given distribution of atoms may 
be writte'n when expressed in electronic units in the 
form 

Here N0 '" N/n is the number of atoms in a sublat­
tice, q = k2 - k1 is the difference between the propa­
gation vectors of the scattered and incident waves, 
Ris = Ri + R8 is the vector drawn from the origin of 
coordinates to the sth lattice point of the ith sub­

lattice, Psis = 1- pAis' fA and f8 are the atomic 
scattering factors of atoms A and B corresponding to 
the vector q. The expression fA pAis + f8 PBis' which 
changes in going over from one lattice point to an­
other, can be written in the form of a sum of the term 
fAp Ai + f8 p8 i (p Ai and pBi are the probabilities that 
the lattiee points of the ith sublattice are occupied 
by atoms A and B) averaged over the lattice points 
of the given sublattice, and of the deviation 

(pAis- pA) (fA - f8 ) from the average value:. The 
square of the term corresponding to the purely peri­
odic distribution of "average atoms" 

I
N, 12 

x,s~ exp (iq Rs) I ' (2) 

determin•~s the intensity of the sharp lines (situated 
at q = 211Kn where Kn are the vectors of the reci­
procal lattice) which will not be discussed below. 
The cross term disappears in the limit of an infinite 
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crystal. The square of the second term is determined 
by the deviation of the actual distribution of the 
atoms among the lattice points from the average dis­
tribution and describes the diffuse scattering. The 
intensity of this scattering is equal to 

I 2 = N~ If A- f B i2 1 ± Pqi 1
2

• 

<~0 

(3) 

where 
. 1 N, . 

Pq;= N0 ~ (pAis- P A) exp (t qR;) (4) 
S=l 

and in the rest of this section we shall take q to be 
a reduced vector. We shall label the atomic planes 
perpendicular to the vector q by the index f. If q is 
not perpendicular to any system of atomic planes 
then the crystal may be divided into "infinitely thin" 
layers perpendicular to q which can also be labelled 
by the index f. The numbers of lattice points belong­
ing to one of the sublattices are the same for the 
various parallel planes containing lattice points of 
this sublattice. We denote this number by Jl. In sum­
ming over lattice points lying in one plane (layer) 
the exponential factor in (4) remains constant. 
Therefore in the summation (4) pAis may be re-

placed by the average density p~i of atoms A on the 

lattice points of the ith sublattice in the fth plane. 
Further, if the Z axis is chosen parallel to the vec­
tor q1 then the expressiQn (4) takes on the following 
form: 

N,!, 

Pq;= jy~ ~ (p~i-pA)exp(iqZif). (5) 
/;=1 

Thus, in accordance with (3) and (5) the back­
ground intensity is determined by the deviation of 
the densities p~ in the various planes from the av­
erage density, i.e., by the distribution of the fluctua­
tions in the distribution of atoms A among the lat­
tice points of the various sublattices. The proba­
bility of a given distribution of fluctuation is pro­
portional to exp (- R/ k T) where the minimun work R 
required to produce such a fluctuation is equal to 

R _ 1 ~ '\1 a~? ( 1 _ )2 
- -;f .L.J .L. -a tz PA; P Ai 

i f p Ai 

+ )1 y a~? ( t ) ( r; ) 
.:..J LJ a t a " P~\i- P Ai PAj- P Aj (6) 

i<j f,g PA; P Aj 

·t ~ '\" ___j"_?_ ___ (pf _ pg ) (pZ p ) 
.LJ .LJ a I a g Ai Ai Ai- Ai · 
i f<g p A i p Ai 

Here cp is the thermodynamic potential of the crys­
tal. The second derivatives of the thermodynamic 
potential with respect to the densities of atoms A in 
planes not containing lattice points the interaction 
between which is being taken into account are equal 
to zero. As a result of this the last term in (6) dis­
appears when the crystal is broken up into sublat­
tices as indicated, while in the second term only 
those terms are retained which correspond to planes 
the atoms of which interact with each other. The 
derivatives with respect to concentrations in atomic 
planes appearing in (6) are related to the deriva­
tives with respect to the usual concentrations re­
ferring to the whole crystal by the expressions 

a2 ? v z' a2? 
ap~ 1 ap~j = No ·-i- ap Aiap Aj ' 

(7) 

where z is the total number of lattice points of the 
j th sublattice closest to the given lattice point of 
the ith sublattice situated in the fth plane, while z' 
is the number of such points of the j th sublattice 
contained in the gth plane. 

In accordance with (3) and (5), to determine the 
background intensity one must know not the spatial 
distribution of the quantities p~i' but the Fourier 
components of this distribution. Therefore it is 
more convenient to calculate directly the average 
values of the squares and the products of the 
Fourier components of the quantities p~i' p_t. The 

expansion into a Fourier series of the difference 

P~i - p Ai has the form 

p~ 1 - p Ai = ~ [r 1k exp (ikZ 11) + r:h exp (- ikZ11)], 
k 

(B) 
with 0 < k < 2rr/!Y.Z where !Y.Z is the distance be­
tween adjacent atomic planes (layers). Substituting 
(8) and (7) into (6) and taking it into account that 
k (Zig - Zif) =kat ii• where the vector k is directed 
along the Z axis, agij is the vector drawn from a 
lattice point of the ith sublattice situated in the fth 
plane to one of the nearest lattice points of the jth 
sublattice in the gth plane, we obtain 

R ~ a2? ~ * 
= L...J 1)2 .LJ r ikrik 

i PAi k 

1 a2 z (9) 
+ -2··· )1, ap a9- ~ ~cos aF .. k (r .kr<:k + r~kr .k). 

"'-' A· P A· .L.J .......,. " 'I ' I ' I 
i<j ' I ~~1 k 

Thus the expression for the minimum work breaks up 
into terms Rk corresponding to different k. There-
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fore the exprc~ssion for the distribution of the proba­
bilities for the Fourier components of the fluctua­
tions will correspondingly break up into a product 
of factors corresponding to the individual compo­
nents. The distribution of the probabilities of fluc­
tuations in the qth Fourier component which, in ac­
cordance with (3) and (5), determines the background 
intensity has the form 

where 

w ~ exp (- :; ) = 

1 a2cp . 

kt ap~i ' 

z 
1 a2cp 

a;i = -kr· a a ~ cosa~ii q 
2 PA· PA · ...::j 

' I 1;~1 

(10) 

( ll) 
(i =I= j), 

while riq and r~q denote the real and the imaginary 
parts of the complex quantity riq• With the aid of 
formula ( 10) one may determine the average values 
of the squares and of the products of Fourier com­
ponents belonging to different sublattices 

(12) 

Here the quantites bi; form a matrix inverse to the 
matrix ai; which is determined by formula ( 11), and 
(12) is applicable both fori ,f. j and fori = j. It 
follows from (3), (5), (8) and (12) that the intensity 
of diffuse scattering may be expressed in terms of 
the quantities bi; in the following manner: 

n 

~~~=N~IfA-fBi2 ~ bii· (13) 
i. i~l 

Thus, in order to determine the background intensity 
it is necessary to know the thermodynamic potential 
of the solutiolll as a function of the variables p Ai 

to calculate the matrif ai; with the aid of formulas 
(ll), and then to find the sum of all the matrix ele­
ments of the inverse matrix bii' 

n 

The sum ~ bii may be obtained in a number of 
i, jo~l 

cases without carrying out the inversion of the ma-
trix aii• but by directly finding the sum of the ma­
trix elements of the inverse matrix. Assume that the 
sum of the matrix elements of each row of the matrix 

ai; does not depend on the row index and is equal 
to A: 

n 

~asi =A. (14) 
i=l 

Then the sum of all the matrix elements of the in­
verse matrix will be equal to 

n 

~ b;k=nfA. 
i, h~l 

2. SCATTERING BY DISORDERED SOLID 

SOLUTIONS 

(15) 

Let us determine the intensity of diffuse scatter­
ing by a disordered solution with a crystalline lat­
tice in which the elementary cell contains only one 
atom, taking into account interactions between pairs 
of atoms separated by arbitrary distances. For this 
purpose we pick out within the crystal a polyhedron 
containing a sufficiently large number of elementary 
cells to allow us to neglect the interaction of an 
atom at the center of the polyhedron with atoms out­
side its boundaries. We shall consider that each lat­
tice point within this polyhedron belongs to its own 
sublattice, so that the number of sublattices is equal 
to the number n of lattice points within the polyhe­
dron. Each atom will not interact with the atoms of 
its own sublattice and will interact with one atom of 
each of the other sublattices. Therefore· for the cal­
culation of the background intensity we can use the 
method described in the preceding section, and we 
shall have in the summation (ll) for ~; (i =f, j) only 
one term corresponding to the given i and j (z = l). 
In a crystalline lattice whose elementary cell con­
tains only one lattice point all the lattice points are 
equivalent, and the systems of vectors drawn from a 
given lattice point to all the other lattice points are 
the same independently of which lattice point is cho­
sen as the initial one. Further, in a disordered solu­
tion the derivatives a 3 cp/()pAiaPA; depend only on the 
distance between the nearest lattice points of the 
ith and the jth sublattices (and also on the direction 
of the vector joining them) but do not depend on the 
nature of these sublattices. Therefore the same ma­
trix elements appear in the different rows of the ma­
trix aii• although they may occur in a different order. 
Therefor,e, formula (15) may be used lor the calcula­
tion of the sum of the matrix elements of the inverse 
matrix, and in accordance with (13)-(15) and (ll) 
the intensity of the diffuse scattering from a disor-
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dered solution is 
o:> Z! -1 

/ 2 =NifA-fsnx0 + ~X1 ~ ccsax!Ql (16) 
/ ~--1 X! =- 1 

Here l is the index of the coordinative sphere,* xz 
are indices of the lattice points of this sphere, zz is 
the coordination number corresponding to the lth 
sphere, ax! is a vector drawn from the central lat­
tice point to the lattice point with the index xz in 
the lth coordinative sphere, and 

x - _1_ a2cp (17) 
l - N 0kT ap Alap Ail . 

In order to be able to use formula ( 16) we must know 
the thermodynamic potential of the solution as a 
function of the variables pAil" In the model of the 
solution which we have adopted at high temperatures 
when correlation in the solution is not important we 
have 

N n 

rp = --f ~ ~ {pAjpAilVAAl 
i~1 i£ ~1 

U! -til 

+fpAi(1-pAil)+pAil(1-pAi)}VABl (18) 

+ ( 1 - p A) ( 1 - p A) V BBl} 
n 

+ NokT ~ [pAil In PAil+ (!-pAil) In (1-pAi!)J, 

i!~1 

where vAAl' v ABl and v BBl are the interaction en­

ergies taken with reversed sign for the atom pairs 
AA, AB and BB when one of the atoms is at some 
lattice point j while the other atom of the crystal is 
at the lattice point xz at a distance equal to the ra­
dius of the lth coordinative sphere. It follows from 
(17) and ( 18) that at high temperatures 

WI= 2VABl-·vAA,l-VBBl' 
(19) 

where c is the concentration of atoms A in solution, 
while wz is the energy of ordering for the lth coordi­
native sphere. 

*For the same distance between the central and the 
xzth lattice points the quantities Xz may, generally 
speaking, be different. In such a case we shall take the 
coordinative sphere to be subdivided into several coordi­
native spheres of the same radius for which the xz are 
the same, while z1 denote the coordination numbers for 
such coordinative spheres. 

Expression ( 18) is valid only at high temperatures 
if llwzl/kT « 1 for alll. In the case of arbitrary tem­
perature one may obtain an expression for cp if the 
concentration of one of the components of the solu­
tion is sufficiently small (c « l). According to 
Ref. 12, we have in this case 

1 n n n 

? = - 2 N ~ v BBl - N 0 ~ p Aj L ( v ABl - v BBI) 
il ~1 

n 

+kTNo~ [pAil]npAil 
i~1 

+ (1- PAu) In (1-PA;I)] 
n 

-N0kT ~ pAiPAu[exp (- :; )-1]. 
i<il ~1 

In the above 

x0 = 1/c(1-c); x1 = l-exp(-w1 jkT). 

(21) 

It follows from (16), (19) and (21) that according 
to I, both when the temperature is increased and 
when the concentration of one of the components of 
the solution is made to approach zero, when the so­
lution becomes ideal or weak, the distribution of 
background approaches the uniform Laue background 
/2 = Nl fA ~ f8 l2c0- c). 

If only the interaction with the same atoms of the 
first coordinative sphere (w1 = w; wz = 0 for l,;, 1) is 
important, then for a decaying solution (w < 0) the 
maxima of the ratio /2 /j fA - f8 12 lie near the reflec­
tions corresponding to the principal lines and to the 
incident beam (where the sum ~ cos ax· q = z), while 
the minima lie near reflections corresponding to su­
perstructure lines (where the above sum is negative). 
Conversely, for a solution undergoing ordering 
(w > 0) the maxima of the ratio 12/l fA - fs 12 lie near 
reflections corresponding to superstructure lines, 
while the minima lie near the principal lines. In the 
nearest neighbor approximation it also follows from 
(16) and (21) that at low concentration of one of the 
components the inhomogeneity of the background is 
more sharply pronounced for decaying solutions (for 
the same I wl/kT). 

The quantities xz occuring in ( 16) may be found 
from experiment if the experimental distribution of 
the background intensity is known for different q. 
Indeed, by taking the components of the vectors axz 
and q respectively along the basic vectors of the 
crystalline lattice and along the vectors ba. of the 
reciprocal lattice 
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axz =o ~ daflxla; 
a~l 

it is possible to write the above ratio in the form of 
a three-dimensional Fourier series 

3 

Xz exp (i ~ flxzrxkrx). 
nxl:t.~-co a~I ( 22) 

where nxzo:. take on all the integral values from - oo 

to oo for each ex. Carrying out the Fourier transfor­
mation we obtain 

1 YrrNlfA-!Bl 2 

Xo = E;-;;-3 j ~ ~ 12 dk1dk2dk3 ; 

0 0 0 

- 1 2; 21t 21t N I fA- f B [2 f \ (
23) 

Xz- 87r:i ~ ~ .~ 12 COS\~ flxzak"') dk1dk2dk3 , 

0 0 0 a~l 

where the numbers nxl a• ex= 1, 2, 3 correspond to 
some lattice point in the lth coordinative sphere.* 
In using formulas (23) it should be kept in mind that 
other parts of diffuse scattering which are not con­
sidered here (associated with thermal vibrations, 
geometric distortions, etc.) must be excluded, and 
do not enter into /2 • The method for the experimental 
determination of the functions /2 (kl' k2, k 3) is given 
in Cowley's paper. 6 

Thus with the aid of formulas (23), (19) and (21) 
it is possible to calculate the energies of ordering 
We for different coordinative spheres from the exper­
imental values of the background intensity for vari­
ous crystal orientations and for various scattering 
angles (various ko:.) obtained in the case of scatter­
ing by a solution at high temperature or having a low 
concentration of one of the components. The use of 
solutions with a low concentration of one of the com­
ponents is more convenient in the case of negative 
We since in this case the quantities I xzl are suffi­

ciently large at low temperatures. 
The case when the correlation in solution is not 

small can be investigated by means of the approxi­
mation in which only the interaction with neighbor­
ing atoms is taken into account. It should be em­
phasized that in this case, as before, the correlation 
in all the coo1:dinative spheres is taken into account, 
and not only in the occupancy of neighboring lattice 

*The integration in (23) is carried out over the volume 
of an elementary cell in the space of the reciprocal lat­
tice. This integration obviously can be tak'en over the 
volume of any arbitrary cell. 

points. We shall consider first solutions whose crys­
talline lattices may be broken up into two sublattices 
with the same number of lattice points in such a way 
that each lattice point is surrounded only by lattice 
points of the other sublattice (for example solutions 
with a body-centered cubic lattice, or with a simple 
cubic lattice). After denoting the concentrations of 
atoms A in these two sublattices by p~l) and p~2l we 

shall find that in the nearest neighbor approximation 

formula (16) for the intensity of diffuse scattering 
from a disordered crystal takes on the form 

I 2=,NifA-fsi2 lal+a2 ~1cosaxqr1.(24) 
Here 

2 a2cp 
a 1 = NkT -a (1)' ' 

PA 

z is the coordination number of the first coordinative 
sphere, while ax are vectors drawn from the central 
lattice point to the lattice points of this sphere. The 
quantities a1 and a2 may be calculated in the nearest 
neighbor approximation if use is made of the expres­
sion for the thermodynamic potential in the form of 
an expansion in powers of w/kT where w is the en­
ergy of ordering for the first coordinative sphere. 
Expansions for structures of the type under consi­
deration have been obtained by Chang. 13 By differ­
entiating the series obtained by him for the thermo­
dynamic potential we shall obtain the following ex­
pansions for a 1 and ~ in the case of disordered so­
lutions: 

al = + + zf (; y- zf (1 - 4f) ( k~ r 
-- f [- ·:2 (7- 72f + 180{2) 

+ + f (1- 6nl ( k~ r +... (25) 

Here f = c ( 1- c), y = 24 for the simple cubic lat­
tice andy = 96 for the body centered cubic lattice. 
The terms proportional to (w/kT) 5 and (w/kT) 6 give 
small corrections to the expansions (25) and (26). 
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In the case of high temperatures formulae (24), (25 and (26) lead to the following expression for the back 
ground intensity: 

2 [ w z J-1 I 2 = N If A-fBI c ( 1 -c) 1 + kT- c ( 1 -c)~ cos axq . (27) 

Up to quadratic terms this expression coincides with 
the expression for /2 obtained by Lifshitz9 (for a 
simple cubic lattice). 

In the structures under consideration sharp Bragg 
reflections corresponding to principal lines occur 
at values of the quantity k 1 - ~ for which the con­
ditions q· ax= 211 mx are satisfied, where mx are in­
tegers. The conditions q·ax = rr(2mx + 1) corre­
spond to the superstructure lines. Near these values 
of the vector q one can expand cos ax·q in powers 
of the vector q' which represents the amount that 
must be added to q to obtain the value for which a 
given principal or superstructure Bragg reflection 
occurs If we limit ourselves to quadratic terms we 
obtain: 

I2=NifA-fB\ 2 [al+za2+ ~2 ±(axq')2r1
• 

(~) 

where the upper sign corresponds to a principal line 
and the lower to a superstructure line. 

It was shown in I [see formulae (15) and (21) of 
Ref. I] that at temperatures somewhat greater than 
the temperature of ordering (in solutions undergoing 

ordering) or the temperature of decay (in decaying 
solutions) the background intensity near superstruc­
ture or principal lines respectively is anomalously 
large. If the composition of the solution corresponds' 
to the maximum temperature of ordering or decay, 
then for cubic crystals the expression for the back­
ground intensity has the form 

where T0 is the temperature of ordering or decay re-
spectively. . 

Expressions of the same type for solutions of 
stoichiometric composition are obtained in the sta­
tistical theory from formulae (25), (26) and(~) if 
one takes into account the fact that according to 
Chang 13 the temperature T0 of such a solution is 
determined by the relation 

~. =+- 1+-+--,---+ -+2 --+··· w 4 [ 1 4 1 (y ) 1 l 
kJ 0 -- 2 2 3 z2 2 23 

(the plus sign corresponds to the ordering and the 

X=l 

minus sign to the decaying solution) and if one ex­
pands a1 ± za2 in powers of l/ z. Moreover the sta­
tistical theory permits one to calculate the quanti­
ties f3 and y which appeared in the thermodynamic 
theory as parameters. Expansions of these quanti­
ties in powers of 1/ z have the form 

R=- 1+-+--:--:-+3t--+1 -+····. 1[ 1 51 ,y )1 J 
r' 4 2 ;) z" ' 2 z3 ' 

1 [ 2 14 1 ( y 32\ 1 J 2 
1 = 6 1 + z + -3- 22 + 4 z + :rrz3- + ... a' 

(30) 

where a= \ax\· Thus the parameter y is of order 
a2 /4 and f3 rv 1/3.* 

In order to discuss in the nearest neighbor approx­
imation solutions with a face-centered cubic lattice, 
one should break up this lattice into four simple sub­
lattices each of which contains one of the lattice 
points of the elementary cell of the original lattice. 
In this case the given lattice point has for its near­
est neighbors only lattice points of other sublat­
tices, so that the formulas given above may be uti­
lized. The intensity of diffuse scattering by a dis­
ordered crystal is given, as before, by formula (24), 
but the expressions for the quantities a 1 and a2 

appearing in this formula have a somewhat different 
form. Making use of the expression for the thermody­
namic potential of the solution with a face-centered 

b. 1 . 1 2 . h f f . . cu IC attlce m t e or o an expansiOn m powers 
of w/kT we obtain 

a1 = 1 If+ 12f (w I kT) 2 - 12f (w I kT)3 + · · ·, 
(31) 

a 2 =wlkT- 112 (1-4f)(wlkT) 2 

+ 116 (1 + 12f- 60f2 ) (w I kT)3 + · · · (32) 

These expansions can be used at temperatures con­
siderably higher than the temperature of ordering of 
a solution with a face-centered cubic lattice (in a 

*In Ref. 5 a conclusion is reached that at a phase tran­
sition of the second order the background intensity has 
only a weak maximttm and anomalously large scattering 
should not be observed. This erroneous conclusion is 
connected with the unjustified extension to a three-dimen­
sional crystal of the formula derived by Obraztsov5 for a 
linear chain (where, as is well known, there is no phase 
transition to the ordered state). 
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decaying solution with c"' ~ formulae (31) and (32) 
are approximately valid right up to the temperature 
of decay). 

3. SCATTERING BY ORDERED SOLID 

SOLUTIONS 

In the case of an ordered solution of arbitrary com­
position the sums of the matrix elements belonging 
to the various rows of the matrix ( ll) are, generally 
speaking, not the same, so that one cannot use for-

n 

mula (15) for the determination of the sum ~ bil, 
i, i=l 

but one must invert the matrix aij· If in an ordered 
solution there is the same number of lattice points 
of the first and the second kind, and if each of the 
lattice points is surrounded only by lattice points of 
the other kind, then in the nearest neighbor approxi­
mation one should choose lattice points of the first 
and second kinds for sublattices into which the 
crystal must he broken up in order to be able to 
apply the formulas of Sec. l. By inverting the sec­
ond order matrix aii determined by formulae ( ll) we 
shall obtain from (13) the following expression for 
the background intensity: 

[ 
z 1 

I 2 = N I fA -- f B [2 al + a2 ~ cos ax q - M r ' 
K=l (33) 

where 

Thus, in the nearest neighbor approximation the 
dependence of /2 on the direction of the beam, on 
the angle of scattering, and on the wavelength is 
determined by the sum l: cos ax,· q. If the coordinate 
axes in the cubic crystal are directed along the 
cubic axes, then this sum for a simple cubic lattice 
is given by 2(cos aqx + cos aqy + cos aq2 ) while 
for a body centered cubic lattice 

vx ¥3 ¥3 
4 cos - 3- aq x • cos - 3- aq y · cos - 3- aqz. 

Expressions for a1, a2 , and for the numerator in M 
may be written in the form of an expansion in pow­
ers of w/kT if one starts out with Chang's 13 expan­
sion for c:p. On carrying out a differentiation we 
obtain 

v z ( w )2 z ( w )3 a1 = 2u + 2 v kT - 2 vs ·kr· 

+ r-;4 (7v- 36v2 + 180vu) 

If J I W )4 -- -'- (v2 - 2u - 6uv) ( - + · .. 
4 \kT ' (35) 

a2 = -- - - s -- + - ( 1 - 6v + 36u) --w 1 ( w )2 1 ( w )3 
kT 2 \kT !i kT 

[ 1 If ] I W )' - -2;r(l-12v + 120u)+ z u s~-kT +· .. , 

(36) 

-~{~ +z(k~Y-zs(k~Y 
+ b~ (7-36 v + 180u) 

+ ~ (-v+6u)J(k~y+ .. -}. (37) 

Here 

v == P2> (1- P2>) + p~> (1- p~>) 

= 2c ( 1 -c) - i~ ; 
u = P2>p~> (1- P2>) (1- p:f>) 

= (c2 - ~ )[0-c)2 - :
2
-} 

s = (1- 2p2>) (1- 2p~>) = (1- 2c)2- 'YJ2; 

t = p2> (I -p2>)- p~> (I- p~>) =(I -2c) 'YJ, 

(38) 

where ry is the degree of long range order defined by 
the relations 

The quantity t becomes zero for a solution of 
stoichiometric composition c == ~ and for a disor­
dered solution. In this case according to (37) M == 0 
(within the framework of the model adopted this 
conclusion is valid not only in the nearest neighbor 
approximation, but also taking into account the in­
teraction with more distant atoms) and formula (33) 
for the background intensity becomes considerably 
simpler. We note that in this case the expansions 
(35) and (36) coincide with the expansions (25) and 
(26) for a disordered solution if in the latter one re­
places f --;• P~l} O-p~1>); w/kT-.-w/kT; a.2 ->- o.2 • 
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In agreement with I near the temperature of ordering 
the intensity of diffuse scattering becomes anoma­
lously large close to the superstructure lines. For 
c == ~ the expression for /2 is found to be the same 
as (29) if in this formula (T- T0)/T0 is replaced by 
2(T0 - T)/T0 • 

In solutions of stoichiometric composition AB in 
which lattice points of the first kind are surrounded 
by lattice points of the second and first kinds in 
the same way in which lattice points of the second 
kind are surrounded by lattice points of the first 
and second kinds (crystals of the type of NaCl, 
{3-brass, AuCu etc.) one can investigate the scatter­
ing without making use of the nearest neighbor ap­
proximation. In order to do this one must break up 
the crystal into n sublattices as was done in the 
preceding section for disordered lattices. When this 
is done n/2 sublattices will consist of lattice 
points of the first kind and the same number of sub­
lattices will consit of lattice points of the second 
kind. In the case of solutions of stoichoimetric 
composition AB the derivatives a 2 cp/ap~i are the 

same for different i, and for the structures under 
consideration the sum of the matrix elements be­
longing to any given row of the matrix ( ll) does not 
depend on the row index. Therefore the sum of all 
the bii may be computed by means of formula ( 15), 
Thus, in the case under consideration, just as in the 
case of disordered solutions, the intensity of diffuse 
scattering is given by formula (16). However, in this 
formula one must now regard lattice points of dif­
ferent kinds, even if they are situated at the same 
distance, as belonging to different coordinative 
spheres, so that Ze is equal to the number of lattice 
points of a given kind situated at a definite dis­
tance from the central lattice point (see also the 
first footnote of this article). 

The quantities x0 and xz appearing in formula ( 16) 
may be found in the case of low temperatures, con­
siderably lower than the temperature of ordering, if 
the solution is in an almost completely ordered 
state. In this case according to Krivoglai 2 the 
thermodynamic potential is equal to 

n r n/2 
<p = <p' + kTN0 ~ [p Ai In pAi + (1- p A) In (I- pA)]-kTN0 . ~ (1- pAil) (1- pAi)(e-wz/k.T- 1) 

t~i tz <J·=l 

n n/2 n 

+ ~ PA;tPAi(e-wz/hT_1) + ~ ~ (1-PAu)PAi(ewz/hT_1)]· (39) 

iz <i=n/2+1 iz ~1 i=n/2+1 

Here cp' depends linearly on PAi' and the energies 
wz correspond, as before, to a given pair of lattice 
points of sublattices i and j. Taking the first sub­
lattice to consist of lattice points of the first kind, 
and taking into account the fact that for c == ~ pAi 
== ~ (1 + T/) we obtain 

X0 = 1 I p AI ( 1 - pAl) = 4 I ( 1 - 'Yj2), ( 40) 

Xz = 1-exp(-wzlkT), (41) 

i£ the lth coordinative sphere about a lattice point 
of the first sublattice consists of lattice points of 
the first kind, and 

Xz = exp (wz I kT)- 1, (42) 

if the lth coordinative sphere consists of lattice 
points of the second kind.* Formulas (23), (41) and 

*Here we consider lattice points of different kinds, 
corresponding to the same value of Pz , as belonging to 
different coordinative spheres. 

( 42) enable us to determine the energies of ordering 
for different coordinative spheres in an almost com­
pletely ordered solution from data on the distribu­
tion of background intensity. 

In the case of solutions AB in which each lattice 
point is surrounded only by lattice points of the 
other kind (of the type of N aCl, or {3-brass) it fol­
lows from (16), (40) and (42) that in the nearest 
neighbor approximation the background intensity at 
low temperatures is equal to 

r 1 - 2 z J-l X 1 + ~ (ew/hT -1) l:cosaxq . 
- X~ 

(43) 

As T -+ 0, Ti approaches unity exponentially? 2 

1- 7)"' 2exp (- zw/kT). Therefore the second 
term in the denominator of (43), which is associated 
with correlation and which leads to an increase in 
the background near the superstructure lines, de­
creases exponentially as exp [- (z- 2) w/kT] as the 
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temperature is reduced and the inhomogeneity of the 
background disappears in agreement with I. The 
quantity /2 itself also decreases exponentially like 
exp (- zw/2kT) (in a completely ordered crystal the 
intensity of diffuse scattering of the type under con­
sideration is evidently equal to zero). It can be 
easily shown that for solutions having a structure 
of the type under consideration whose composition 
differs somewhat from the stoichiometric composi­
tion with c == ~ the value of 12 at very low tempera­
tures is equal to 

/2 == N I fA- fB) 2 {c(l -c) 

(44) 

X (eW I hT - 1) ~cos axq 1. 
X=l J 

In the case of almost completely ordered solutions 
with a face centered crystal lattice having a lay­
ered structure of the type of AuCu and of stoichio­
metric composition it follows from (16), (40), (41) 
and (42) that in the nearest neighbor approximation 

where the ind·~x x 1 labels vectors drawn between 
lattice points of the same kind while x 2 labels those 
drawn between lattice points of different kinds. It 
may be seen from formula (45) that even if one neg­
lects the us11ally small tetragonality of crystals of 
the symmetry type under consideration (a difference 
in the length of the vectors ax and ax ), neverthe-

t 2 

less the directions ( 100) perpendicular to the planes 
containing lattice points of one kind, and the direc­
tions (010) and (OOl) which lie in these planes turn 
out not to be equivalent with respect to x-ray 
scattering. 

For solutions of the type AuCu whose composition 
differs slightly from a stoichiometric one it is easy 
to carry out at low temperatures the inversion of the 
matrix·a;j making use of the fact that in this case 
the non-diagonal matrix elements are considerably 
smaller than the diagonal ones. As a result of this 
we shall obtain from (11), (13) and (39) 

- [1--exp(- k~ )] [(c (1-c)- T:y 
2 4 

+(1-4c(1-c))~J .~cosax,q (46) 
X(:::x::l 

8 

X ~cosa,,q} 
x2,_l 

In an analogous manner it is possible to obtain 
the intensity of diffuse scattering from almost com­
pletely ordered solutions with a face centered cubic 
lattice of the type AuCu3 

(47) 

1 

+ (c -- ~) ( 1- c + ~) (1- e-w/kT) J _6 cos a, q}. 
X=l 

tVe note that formulas (45) -(47) which have been 
derived for almost completely ordered solutions hold 
over a considerable range of the existence of an or­
dered phase in solutions of the type of AuCu and 
AuCu3 , since in these solutions the phase transition 
into the ordered state must necessarily be a phase 
transition of the first order, 14 and the degree of long 
range order usually increases as a result of the 
transition to a value close to unity. 

I take this opportunity to express my gratitude to 
A. A. Smirnov for his interest in this work and for 
discussion of results. 
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Interaction between an "excess" electron in an ionic crystal with optical and acoustical 
vibrations of the lattice is considered. Account of interaction with acoustical vibrations 
leads to a reduction of the energy of the system and to a change in the effective mass of 
the current carrier in comparison with the polaron. The wave functions, the energies of the 
ground and excited states of the F-centers and the parameters of the F-absorption band are 
computed with account of the "condenson" interaction. A comparison of the polaron and 
condenson effects in ionic crystals is given. 

T HE INTERACTION of the "excess" electron 
with optical vibrations in an ionic dielectric 

leads to the appearance of "polaron" states. 1 The 

effective mass of the current carrier in such crys­

tals- the polarons- can uiffer appreciably from the 
effective mass of the "band" electron. In polaron 

theory the interaction with acoustical vibrations 
was not excluded in the zeroth approximation, but 

was considered as a reason for the scattering of 

polaron waves. 2 As an excitation potential, use 

was made of the micropotential assumed by Bloch, 

Brillouin and Bethe. 3 Such a consideration is valid 

for those crystals in which the corrections to the 
energy (as a result of consideration of the interac­

tion with the acoustical vibrations of the lattice) 
are significantly smaller than the spacing of the en­

ergy levels of the polaron. However, the effect of 
the interaction with acoustical vibrations of the lat­

tice is not small in a whole series of ionic crystals 

with strong homopolar coupling. Hence, considera-

tion of this interaction in the zeroth approximation 
of the theory is a necessity. 

Such a consideration is given below. We chose a 

potential of the deformation type as the interaction 
potential for the electron with the acoustical vibra­

tions of the lattice. This potential was hypothe­

sized by Pekar and one of the authors of this paper,4 

and is the condenson potential.* The energy terms 

and wave functions of the system were computed by 

the variational method and by an adiabatic approxi­
mation. The effective mass of the current carrier 

was computed; it differs from the effective mass of 

the polaron. In this same approximation, the quan­
tum states of the F-center were considered and the 
parameters of the F-absorption band were obtained. 

A comparison of the magnitude of the condenson and 

polaron effects in ionic crystals is given. 

*This potential was proposed independently by Bar­
deen and Shockley.' 0 


