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Equations with variational derivatives for correlation functions have been derived. A 
method is developed for solving these for various systems in statistical equilibrium. A 
•superposition" theorem is derived for obtaining the correlation functions when the inter­
action between the particles of the system can be described as the sum of long and short 
range forces. 

T HE BEHAVIOR OF A statistical system of in­
teracting particles is determined by the corre­

sponding distribution functions of these particles 
Fs(X1 , x2 , ••• , X5 ) (s = l, 2, 3, ... ). Bogoliubov 1 

has shown that the functions F s can be represented 
by variational derivatives of the functional intro­
duced by him, and the series of equations for the 

determination of these distribution functions were 
first obtained by him. As Bogoliubov also pointed 
out 2 , his functional does not have a direct physical 
interpretation; he therefore pointed out a method in 
Ref. 2 for the construction of other functionals, 
based on the idea of the inclusion of the external 
field, in a manner similar to that employed in the 
Schwinger theory of the Green function. 

In the present work, starting out from a function­
al for the free energy of a system of M types of 
particles in an external field cp (x ), closed equa­
tions are found with variational derivatives for the 
unitary distribution function for different forms of 
the functional argument; with the help of these de­
rivatives, a method of determining the correlation 
functions has been deduced for systems of particles 
with different interactions: Coulombic <ll0 (r), an in-

teraction decreasing rapidly with distance, <l.\ (r), 
and an interaction of the form <D (r) = <ll0 (r) +<D1 (r). 

I. FREE ENERGY AS A FUNCTIONAL. 
DISTRIBUTION FUNCTIONS. EQUATIONS 

WITH VARIATIONAL DERIVATIVES 

Let us consider a system of M types N a mole­
cules of the ath type. Let this system be located 
in an external field cp(r). The probability density 
function of the position of the molecules is deter­
mined by the Gibbs function: 

(l) 

where UN is the potential energy of interaction of 
the particles with each other; rai determines the 
position of the ith molecule of the ath type, while' 
the summation is taken over all different pairs of 
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molecules; Q is the configuration integral of the 
system; the mutual potentials <I>ab are assumed to 
be symmetric functions relative to a, b; El = kT. 

The free energy of such a system, 

F=-Elln Q = 

- Elln ~ exp {- ~- (UN+~ 'fa (r))} d-e (2) 

is a functional of the external field cp (r). The dis­
tribution functions of complex particles 
Fa 1 , ••• ,as (r,. ... , rs) which are so normalized that 

v-sFa" ... , as dr1 ••• drs defines the probability. 
that s particular molecules of types a, ... , as 

having specified coordinates in the volume V, can 
be expressed by variational derivatives of the 
functional (2). 

Actually, we have from (2) (we shall denote the 
ri as x, y, ... ) : 

oF J'o'fa (x) = Na Ea (xI cp) I Q, (3) 

Fa (xl :p) =(VI Na) oFjo·:;a (x), (4) 

where 

Xal=X 

E a (X [ 'f) = ex p {- ~- (UN + ~ cpa (Xi)} , 
a,' 

Fa is the distribution function of a single particle 
(the number density of particles of the a th type) in 
the presence of the external field cp (x ). (Here the 
bar over quantities denotes integration over all 
variables {xa, i} except Xa 1 = x.) It is easy to find 
the distribution function of a pair of particles 
F ab (x, y I cp) by taking the functional derivative of 
(3). We then get: 

or 

o<pa (x) o<pb (Y) 

=~;{ -(Nb-oab) Eab(~Yl?) 

-t- N E a (x I 'P) E b (y I rp) } 
b Q Q 

(5) 

!)2F Na(Nb-'i'}ab) · 
o<pa(x)!)<pb(y)=- f1V2 Fab(X,_Yl'f) 

Na 
- 0V Fa (x! :p) o (x- y) 

(6) 

where 

Eab (x, Y I cp) = exp {- (! (UN+~ 9a (x))}, 

and oab is the Kronecker delta. From (6) we obtain 

Nb 
Fab(x,y[cp)= 1v -/'} Fa(xlcp)Fb(y[cp) 

b ab 

EJV2 !)2F 
N a (iV b- oab) orpa (x) o<pb (y) 

(7) 

or 

___ v_p (x' ~) o(x- y) 
Nb- oab a I ' 

EJV oFa(xJ<p) 
Nb- 0ab 0'Pb (Y) 

(8) 

It is then obvious that the pair correlation function 
is entirely expressed in terms of unitary functions 
with the help of variational derivatives. 

If, just as we did with Eq. (3), we continue to 
take functional derivatives of Eq. (5), then we find 
the value of the third functional derivative and the 
four-particle distribution function Fa be (x,y,y\ cp) 
which, similar to F ab (x, yJ cp) is also entirely ex­
pressed in terms of unitary distribution functions 
with variational derivatives. 

Thus, finding the correlation functions 
Fs (x" x 2 , ••• , xs) (s = 2, 3, ... ) reduces to the 
determination of the unitary distribution function 
and the corresponding variational derivatives. 

Beginning with the determination of the unitary 
distribution function 

X =X a, 
Fa(x 1 cp)=VD (9) 
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it is easy to find a closed differential equation with 
variational derivatives. Actually, differentiating 
the Gibbs distribution with respect to x:1 , we get 

aD 1 alP"' (x) 1 au N 
-"' +e---"'- D+ 0) -"' D= 0 (ex= I, 2,3). 
axa, axa, axa, 

Multiplying by V and integrating, we have 

ap a (xI ~P) + _!_alP a (x) F (xI tD) + _1 ~ (N -a ) 
ax" El iJx"' a . ' EW .LJ b ab 

b=l 

Substituting (7), and carrying out the transition to 
the limit N -> oo , V -> oo for the finite ratios 
V/N = v, Na/N = na (a= 1, 2, ... , M) we obtain a 
closed equation for Fa (xI cp) with variational deriv­
atives: 

aFa(xf<p)+_!_a<Jia(x) F (xjrD)= 0 (10) 
ax"' e ax"' a ' ' 

~a (x) = 'fa (x) 

+ ~~ <~>ab(ix-y!)r: Fb(y!rp) 
b=l 

~ _3_t 
- o (x- y) -8 31Pb (Y)j dy 

or an equation in variational derivatives of the 
functional F ( cp ) : 

(11) 

a 3F 1 alP a (x) 3F 1 ~ r a<Dab (I X- y f) 
axd. 3tpa (x) + e ~ 3<pa (x) + - .LJ ) ax"' 

b=l 

{ 3F 3F 3F , 
X 3<pa (x) 3<pb (y)- 3<pa (x) 0 (x- Y) 

(12) 

It is evident from (10) that the equation for the dis­
tribution fun·ction Fa (x! cp) is the same form of an 
equation as in the case of the motion of two parti­
cles of an ideal gas in a given external field 
t/Ja (x ). A real interaction between the particles is 
expressed by the fact that t/Ja (x) is not the usual 
field but an operator one. 

Let us now analyze the method -of finding the cor­
relation functions, starting out from Eq. (10), with 

variational derivatives of the unitary distribution 
function, for the case of a different sort of system. 

2. SYSTEM WITH COULOMBIC INTERACTION 
BETWEEN THE PARTICLES 

We consider a system of electrically charged par­
ticles interacting according to Coulomb's law. The 
operator field in which the particles of the system 
are placed has the form (11). If the second and third 
terms in the integral of this operator field. are small 
in comparison with the first term, we then have the 
ordinary field 

Neglect of these terms corresponds to ignoring the 
short-range interaction forces between the parti­
cles. 

Equation (10) for the distribution function 
Fa (x! cp) of a system of particles between which 
only long-range forces act (for example, Coulomb 
forces) will then be 

a _F_a_(_x_l cp_) + _.!._ _acp_"' (_x) F (xI tD) 
iJx(J. l-1 ax"- a ' 

Let the total charge of the system be zero and let 
the different particles differ only in charge. We de­
note the charge of the particles of type a by the 
symbol ea; there are M types. Then 

(15) 

For Coulombic interaction <I>ab =eaeb/sr, where 8 

is the dielectric constant of the medium. In our 
case, this includes electrolytes phenomenologically. 

In looking for a quantity which serves as the 
small parameter in powers of which we shall expand 
Fa (x!cp ), we can, following Bogoliubov 1, transform 
to dimensionless quantities, taking the Debye radi­
us r d as the unit of length: 

M 

r~ = E>sv / 4;-: ~ nae;. (16) 
a=l 

Then for the case of the Debye theory of electro-
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lytes at low concentration, when the interaction en­
ergy at distances of the order of r d is much smaller 
than the thermal energy (eaeb/c;rd << 8), the vol­
ume per particle in dimensionless mi.its is our 
small parameter: 

v* =vIr~ o= fL = 4" Snae; 18e:rd~: 1. 
a 

In this case, introducing variables of the order of 
unity 

we note that <I>ab (r)/8 = 11 A a Ab /r*. Keeping this in 
mind, we shall not transform to dimensionless units 
but immediately expand Fa (xlcp) in powers of v, 
remembering that <I>ab (r )/8 is proportional to v: 

<Dab (r) I e = V'fab (r)' 

Thus, we shall solve Eq. (14) with the help of the 
expansion 

Fa (xI cp) = F~ (xI cp) + vF~ (x l cp) 

+v2F;(xlcp)+ ... 

with the normalization condition 

i.e., 

lim ~ \ F~ (x f rp) dx = 0. 
v~ oo J 

(18) 

(19) 

Substituting (18) in (14) and setting the sum of terms 
of a given power of v equal to zero, we obtain the 
equations for the approximation: 

(20) 

oF~ (xI <t>) 1 iJ<p<X (x) 1 

ax <X + 8 a;;.- Fa (X I cp) 
(21) 

+ F~ (xI cp) ~ ~ a\jiab ~:<X- Y I) nbFt (y I cp) dx 
b=l 

Setting the external field cpa (x) = 0, we get equa­
tions for the approximation in the absence of such 
a field. We note that, according to (15), the· follow­
ing condition holds: 

M M 
S 'fab (r) nb = (ea I Ele:vr) ~ nbeb = 0. (22) 

b=l b=l 

By virtue of the normalization condition, Eq. (20) 
has, at Cfla (x) = 0, the obvious solution 

F~ (x) = 1. (23) 

From Eq. (21) [at qJa (x) = 0], we get F! (x) = D by 
taking (22), (23), and (29) into account. Solution of 
the equation for subsequent approximations similar 
to the solution of Eq. (21), gives [for <:j)a (x) = 0]:' 
F ~ (x) = 0, i = I, 2, ..... Thus, in the absence of 
an external field, in a system of charged particles 
in the approximation in which the second and third 
terms in the operator field (II) are small in compar­
ison with the first term, the distribution function 
for a single particle Fa (x) has a value exactly 
equal to unity: 

Fa (x) = F~ (x) = I, (24) 

which corresponds to a spatially homogeneous dis­
tribution of the particles. 

The correlation pair function in the absence of 
field will be, by Eq. (8): 

Fab (x, y) =Fa (x) Fb (y)- (v jnb) Fa (x) a (x- y) 

- (v8 I nb) ('BF a (xI cp) I 'Bcpb (y})rp~o 

or 



876 I. P. BAZAROV 

In the first approximation, We find the variational derivative here by taking the 
functional derivative of Eq. (20) with respect to 

Fab(x, y) = 1-(vlnb)o(x-y) 

- (v8 I nb) (oF~ (x! cp) I ocp/) (y))0 • 

Cf!b (y) and assuming cp(x} = 0, taking Eqs. (22) and 
(25) (24) into ac;;count. We then obtain 

(8F~(x I tp)) + _L 0 (x _ ) + ~ I ~ac (/X- Z [) nc (SF~(z I rp) ) dz = 0, 
\ 8tpb (y) 0 H y C~l J 8tpb (y) 0 

or, on the basis of Eq. (25): 

M 

1-Fab(x,y) + ~ ~ '~ac (lx-zi)nc(O-Fbc(Y,Z)- :bo(y-z))dz=O, 
c~1 

M 

1-Fah(x,y)-v~ab(!x-y[) + ~ ~~ac([x-zj)nc(I-Fbc(Y,Z))dz = 0 

Writing (F ab (x, y) - 1)/v =gab (x, y), we get the 
equation 

gdb (x, Y) 

c~1 

M 

+ ~ ~ ~ac (/X~ Z I) ncgcb (z, y) dz =- ~ab (/X- Yl), 
c~l (26) 

the solution of which is well known 1: 

gab (x, Y) =gab (I X - Y I) 

=gab (r) =- ),)1-;;2 exp (- r I rd) f r 

and, consequently, 

The variational derivatives ofF~, F~, etc., are 
equal to zero, as is not difficult to show by taking 
functional derivatives of Eq. (21). So also is the 
equation for the other approximations. 

Thus the solution of Eq. (10) with variational de­
rivative reduces in our approximation (for Coulomb 
forces) to the value of the binary distribution func­
tion F ab (x, y), which coincides with the first ap­
proximation for this function, which was first found 
by Bogoliubov 1 and which is well known in the 
Debye theory of electrolytes. 

Determination of the pair distribution function by 
starting out from the exact Eq. (10) for Coulomb 

forces, reduces to finding the variational deriva­

tives (oF~ (xI rp) I (oq>b(Y))o, (oF~ (xj rp) I orpb (y))o, 
etc., from the corresponding equations for the aprox­
imation in the expansion of the unitary distribution 
functions in powers of v. This is the procedure 
that we have already carried out. In Sec. 3, we shall 
consider the details of finding these derivatives for 
systems of particles with short-range interaction 
forces. 

3. SYSTEM OF PARTICLES WITH SHORT-RANGE 
INTERACTION FORCES 

Suppose that we have a molecular system (of 
weak concentration) of identical particles whose 
mutual interaction falls off rapidly with distance, 
so that r~/v is a small parameter (r0 =effective ac­
tion radius of the molecule). We can find the cor­
relation function of such a system by starting from 
Eq. (10) with variational differentiation with the 
aid of an expansion in powers of the density 
n = l/v. In order to determine the coefficients of 
this expansion for the correlation function, it is ad­
vantageous to replace the functional argument cp(x) 
by u(x) in Eq. (12) for one type of particle (M = 1), 
using the formula 

cp (x) = -8 In (1 + vu (x)) (28) 

and then represent the correlation functions by the 
variational derivatives of the new functional with 
another argument. In such a substitution of the 
functional argument, we have: 
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acp (x) v8 au (x) 

ax"- 1 + vu (x) ax"- ' 

~ _ \ ~ 13u (y) d = _ \ _3.!_ 1 + vu (y) 0 (x _ ) d __ 1 + vu(x) ~ 
.3cp (x) - J 13u (y) 13cp (x) Y J 13u (y) v0 Y Y - v8 13u (x) ' (29) 

__ 13:.!___ = (1 + vu (y)) (1 -+- vu (x)) I3 2F _ _1__ 0 X_ ___§!_ 1 vu X 
13cp (x) 13cp (y) v21:12 13u (x) 13u (y) + v8 2 ( y) 13u (x) ( + ( ) ) · 

Substituting (29) in 02) (for M = 1), we 'find that the new functional F(u) satisfies the following equation 
in variational derivatives: 

(30) 

[here we write u(x) = ux for brevity]. 
We introduce the functions 

- ( ) 'sF/' ' gs X1, X2 , .•. , Xs = 0 OUx, • •• 0Ux5 , (31) 

which are connected with the distribution functions in the following way: 

(32) 

and on the basis of Eqs. (7) and (29): 

F 2 (x1, x2l cp) = N N 1 F dx1 i cp) F I(x2l cp)- N v 1 o (x1 - x2) F 1 (x1l cp) 

} 

and in the limiting case (V, N---> oo, N/V = n) and for u = 0, we get 

(33) 

Similarly we can represent the other Fs in terms of g 5 • Using Eq. (31), we can put Eq. (30) in the form 

- agr(xlu)+_1 ~a<D(Ix-y/) ( + ){ ( I ) ( I )-a 13gr(X/U)}d 
a a 82 "' n U y g 1 X U g 1 y U u " y. 

X dX oyy 
(34) 

We expand g 1(x I u) in a power series in the density n = 1/v: 

(35) 
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Substituting this expression in Eq. (34), we get equations with variational derivatives for determining the 

expansion coefficients 

ag~ (x I u) 1 \ acD ( I X- y I> { ~g~ (xI u) } 
axrr. + €12.) ax" Uy g~ (xI u) g~ (y I u)- e auy dy=O, (36) 

- ag~ (xI u) + _1_ ~ a<n ( i X- y ll { 0 (xI u) 0 ( . 'u)- e ag~ (xI u) 
a ex (:;2 a (1. g 1 I g 1 y I au 

X X y 

agl (xI u) } + uy (g~ (x! u) gi (y! u) + gny 1 u) gi (x 1 u))- e 1au dy = o. 
y 

(37) 

Setting u = 0, we get from Eq. (36): og~(x)/oxa = 0, whence g~(x) = const, since g~ is symmetric relative 
to x, y, z. 

We have from Eqs. (32) and (19): 

g~(x) =- e 

and consequently, 

F~ (x) =· - g~ (x)jEl = 1. 

We find the following approximation for F 1(x). By substitution of u = 0 in Eq. (37), we determine 
F~(x) = -g~(x)/8: 

_ agi(x) ~a<D(/x-yll( 1 _ _!_ ag~(x))d =O. 
a (1. + a (1. e au y 

X X y 

(38) 

(39) 

(40) 

The expressions under the integral in this equation can be found by functional differentiation of (36) with 

respect to Ux2 and subsequent equating of u to zero: 

___: _i_ ag~ (x) + _i_ acD (I X- x2 I) ( 0 (x) 0 (x ) - e ag~ (x) \ 
at" au EJ2 ax" g1 g1 2 au j (41) - x2 id x, 

+ _1_~a<D(/x-yl)u ( O(x) ag~(y) + O() ag~(x) -8 a2g1(x))d =0. 
8 2 a ct. y \ g 1 au g 1 y au au au y 

X \ Xz x2 y Xz 

Employing (38) and setting u = 0, we get, upon integration 

og~ (x)jouy = fl ( 1 - C1 exp {- ~ <D (!X- y /)}). (42) 

Substituting (41) in (40), and making use of (19), we find 

gi (x) = 0 (43) 

and, consequently, F~(x) = 0. Similarly, the following approximations are determined: 

F~ (x) =Fi (x) = · · · = 0. 
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Thus 

F 1 (x) = 1, 

which corresponds to a uniform spatial distribution of particles with short-range interaction forces in 

statistical equilibrium. 

879 

(44) 

We now determine the pair distribution function. If we substitute the expansion (35) for g 1(x) in Eq.(39), 

we obtain an expansion of the function F2 (x1, x2) in powers of the density of the form: 

F 2 (x, y) = pg (x, y) + nF~ (x, y) + n2F~ (x, y) + ... , 
where 

or 

(45) 

since, from the boundary condition: 

it follows that the constant c1 = l; 

As is evident from (46), F~(xl, x,) is proporti.onal to the variational derivative og~(xJ/ 0 Ux2· We can find 
this derivative by functional differentiation of Eq. (37) with respect to ux2 and setting u = 0. We then get, 

taking Eqs. (38), (42) and (43) into account: 

We find the derivative of g~ here from Eq. (41) by functional differentiation with respect to uy and sub­
stitution of u = 0, and also, making use of Eqs. (38) and (42). We then get: 

o2g~ (x1)jouyoux, = B {exp [- ~ (I x 2 - y!) J + exp [--~<I> (I x1 - x2 1) J 
+ exp [- ~ <I> ([ x1 - y I) J- 2} 

+ c2 exp {- ~ [ <D (I X1 ~ X2l) + <I> (I x1 - y!) + <I> ( I x2 - Y I ) ]} . 

(48) 

(49) 
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The constant c2 is determined similarly to cu and is equal to unity. 
Substituting Eq. (49) in (48) for c2 = 1, we get the equation 

X exr{- ~ [Cll (j x1 - y J) + cD ([ X2 - y J)J}dy. (50) 

\1oreover, since 

where 

f (r) = exp {- cD (r)/9} - 1, 

then, taking (46) into consideration, we get the following equation for F~(x" x2 ): 

(51) 

Looking for a solution of this equation in the form 

we get (after substitution): 

F~ (\ x1 - X2 [) = F~ (/ x J) = exp {- ~ cD ( Jx /)} ~ f (/ x - x' I) f (/ x' /) dx'. (52) 

Similarly, we can find the other terms of the expansion ofF~, F~, etc. 
Thus the pair distribution function of a system of particles with short-range interaction is equal, with 

accuracy up to terms of second order, to 

F 2 (x1 , X2) = F 2 (j x J) = exp {- ~ cD (I xi)}( 1 +n ~ f (!x- x' j) f (/ x' /) dx'). (53) 

Other correlation functions are found by the method of variational derivatives in the same way as the pair 
functions. 

4. SUPERPOSITION THEOREM 

In Sees. 2 and 3 we developed a method for find­
ing the correlation functions for systems of parti­
cles corresponding to the Coulomb interaction po­
tential 1>0 (r), and to a potential <1>1 (r) which falls off 
rapidly with distance. In the first case, these func­
tions are found by an expansion in powers of v; in 
the second case, by an expansion in powers of 
n = 1/v. Here, the first approximation for the pair 

distribution function (27) loses its applicability for 
small r, and finding higher approximations would be 
senseless since they diverge even more strongly for 
small r. 1 

Real interaction between charged particles con­
sists of Coulomb forces (r > r0 ) and short-range 
forces, such that the potential of this interaction 
has the form <l>0 (r) + ~1 (r). However, as Bogoliubov 
pointed out in Ref. 1, the problem is open at the 
present time of the construction of expansions by 
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which we could find the correlation functions for 
systems with interaction including both Coulomb 
and short-range forces; such a construction would 
make it possible to obtain asymptotic formulas for 
any approximation. 

In the present Section, making use of variational 
derivatives, we establish a "superposition theo­
rem", i.e., we set forth a method of investigation of 
a system with interaction of the form 

<D (r) = <1>0 (r) + <1> 1 (r). (54) 

Let the total energy of interaction of a system of N 
particles in the potential (54) be equal to 

U = U 0 + ~ <1>1 (\ Xi -xi J), 
1-<:i<i<N 

where U0 is the part of the interaction energy of 
the system of particles which corresponds to the 
potential <l>0 (r). Moreover, if our system is located 
in an external field cp(x), then the configurational 
integral of the system is 

Q = ~ exp{- ~ U- ~ L} cp(xi)}dx1 ... dxN 
1-<;i<,N 

=~exp{-~Uo-~ L} cp(xi)} IT (l+f(xi,xi))dx1 ... dxN, 
1-<;i<N 1-<:i<i<N 

(55) 

where 

The free energy of the system is equal to F =-® ln Q. 
Both the configurational integral (55) and the free 

energy are themselves functionals of the external 
field cp(x) and the interaction energy f(x;, xi). The 

correlation functions of the system F 1(x1 \ cp \f), 
F/x1, x2 \ cp \f), etc., are expressed in terms of the 
variational derivatives of the functional F with re­
spect to cp(x) according to Eqs. (4) and (7). 

In Sees. 2 and 4, we found F 1 (X1 \ cp) from the cor­
responding equations with variational derivatives 

with the help of well known expansions. We now pro­

ceed otherwise. We shall show that the functional 
F(cp \f) can be expressed by the correlation func­
tions of the system for a potential <l>0 (r), so that, 
for finding the variational derivatives of F(cp \f) 
with respect to cp(x) and, consequently, the corre­

lation functions F5 (x1 , ••• , X 5 \ cp \f), it is not nec­
essary to construct and solve the differential equa­

tions for these functions; it is .necessary to know 
them only for the potential <l>0 (r), the determination 

of which was carried out in Sec. 2. 
With this end in view, we expand the function 

F(cp \f) in a series 

F ( cp I f) = F f -o + r f (X' y) ( 3f3F ) dx dy + ~ \ f (X' y) f ( x'' y') ( 3f 
32 ~~ I ,)!_ dx dy dx' dy' + ... 

~ X, y f-0 J X, y X' y 0 (56) 

and find expressions for the variational derivatives therein: On the one hand, we have from (55): 

oQ = ~ exp{- {- U 0 - ~ ~ cp(xi)} L} of (xi, xi) 
1< i<N l<r<i<N 

X [ IT (1 + f (x,, Xs))/(l+f (xi, xi))]dx1 •.• dxN, 
l<:r<s<N 

(57) 
(1 +f(x,y)) a:Q =N(N2-i)~exp{- ~ U 0 - ~ ~cp(xi)} 

x,y I 

X IT ( 1 + f (xr,Xs)) dx3 • •• dxN 
l<r<s-<.1\l 
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(here we have set x 1 = x, and x2 = y), and on the other hand: 

~g_ =- ~ \ exp {-l U 0 - --k ~ tf(Xi)} II (1 + fr, s) dx2 ••• dxN, (58) 
q>x j j · 1-<;r<s<N 

~ IP~ = N(i~;- 1)\ exp{- ~ U0 --~ ~rp(xi)} II (l+fr. s)dx3. · .dxN 
q>x q>y J j l<r<s<N 

+ ~ o(x-y)~exr{- !) Uo- ~ ~rp(xj)} II (1 +fr.s)dx2 ... dxN. (59) 
1 I<.r<s<N 

Comparing (57) with (58) and (59), we find 

~(x-y) ~Q} 
e ~'Px ' 

(60) 

and since Q = e-FI®, then, substituting the values of the corresponding variational derivatives in Eq. (60), 
we get 

Again taking functional derivatives of this equation with respect to fx'y'• we find an expression for the 
second derivative. The right side of (61), in accord with Eqs. (8) and (4), is equal to 

therefore 

Setting fxy = 0, we get 

i.e., this variational derivative is expressed by the pair distribution function for the potential <l>0 (r). 
Therefore, in first approximation, and in accord with (56), the free energy of-the system for the poten­
tial (54) is equal to 

F(tf/f)=Ff-o-n2 ~ ~f(x,y)F2 (x,yJtf)dxdy. 

(61) 

(62) 

(63) 

Knowing F 2(x, y I cp), taking the functional deriva­
tive of (63) with respect to cp(x), we can find the 
correlation functions F 1(x I cp I f), F2(x, y I cp I f) 
etc., and then setting cp = 0, we find F 1(x I f), 
F2 (x, y I f) etc. for our system. 

Academician N. N. Bogoliubov under whose direc­
tion this research was carried out. 

A calculation carried out by the method of corre­
lation functions of a system for the concrete case 
<l>0 (r) and <1>1(r) will form the subject of another pa­
per. 
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