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The hydrodynamical equations are obtained for solutions of two superfluid liquids on the 
basis of the conservation laws. In this case, three independent motions are possible i.n the 
liquid: a normal one with velocity Vn and two superfluid (potential) ones with velocities 

, d II • 
Vs an Vs • Three d1fferent types of sound vibrations can be propagated in such solutions. 

W E CONSIDER here two superfluid liquids, for 
example, liquid He 4 and liquid He 6 • In such a 

case, three possible motions are possible (in princi­
ple) in the liquid: the normal motion with velocity 
v , and two superfluid motions with velocities v' 

n s 
and v ;. We shall show how the equations of this 
three-velocity hydrodynamics can be obtained from 
the conservation laws and from the principle of the 
potential character of the superfluid motion. In the 
derivation of these equations, we shall consider the 
liquid in a frame of reference in which the normal 
(non-superfluid) portion of the liquid is at rest. In 
this system, the total energy of the liquid can be 
written in the form 

(l) 

Here we have adopted the following notation: p is 
the density of the liquid, p' and p 11 the respective 
momenta of the two superfluid motions, and 8 the 
internal energy of the liquid. The latter is a func­
tion both of the thermodynamic variables density 
p 1' p 2 and entropy S, and of the relative velocities 

v 8'- v n and v 811 
- v n and is defined by a thermody­

namic identity. 
The form of the thermodynamic identity is estab­

lished in the following way. We recall the expres­
sion for the total energy E which we used in the der­
ivation of the hydrodynamical equations for He 11 1: 

E = pv~ /2 + p'vs + s'. (2) 

Here p' is the momentum of the relative motion in 
the reference system, which moves with velocity v s; 
it is expressed in terms of the total momentum of the 
liquid j: 

p' = j- pvs. (3) 

The energy is defined by the thermodynamic identity 

ds' = fJ.'dp + TdS + (vn- V 5 , dp'). (4) 

If we replace the momentum p' by the momentum p 

in the reference system which moves with velocity 
v: n 

the expression for the energy E reduces to the form 

£=pv~/2+pvn+s, (6) 

where the internal energy c; is already defined by a 
different identity than Eq. (4). namely, 

ds = fJ.dp + TdS + pd (vs- Vn) (7) 

with the chemical potential f.L connected with f.L' by 
the relation 

Thus, when we transform to the reference system 
associated with the normal motion, we must regard 
the internal energy 8 as a function of the density, 
entropy and relative velocity. In this case, Eq. (7) 
is also a definition of the momentum of the relative 
motion p. 

In the case of three-velocity hydrodynamics, the 
thermodynamic identity is written, in analogy with 
Eq. (7), as 

ds = fJ.1dp1 + fJ.~dp2 + TdS 

+ p'd(v~-vn) + p"d(v:-vn), 
(8) 

f.L 1 and f.L 2 are the chemical potentials of the compo­
nents of the solution. The densities p 1 and p 2 

are expressed in terms of the concentration c of the 
solution 

Oo =()(I- c). . - . (9) 

We now write down the conservation laws for the 
energy E, the momentum of the liquid j=p'+p" +vn, 
the mass, and the entropy. For the energy we have: 

E -+- div Q = 0, (10) 

Q is the vector flow of energy; its form is unknown 
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to us at present. The time derivative of the momen­
tum j must be equal to the divergence of some 
tensor: 

(ll) 

The form of the symmetric tensor of the momentum 
flux rrik can be established as was done in the der­
ivation of the hydrodynamical equations of a super­
fluid 1• We represent the tensor ITik in terms of its 
value TTik in a reference system moving with veloc­
ity vn: 

IJih =pVn;Vnh + (p~ + p~) Vnh 
I II (12) + (Ph + Ph) Vni + "'ih · 

We shall give the explicit form of the tensor TTik 

below. 
The mass conservation laws are written as equa­

tions of continuity: 

P1 + div (p' + p1V, + g') = 0, 
(13) 

these contain the unknown vectors g' and g". In as-

much as the equation of continuity holds for all 
liquids, 

p + div j = 0, 

the following relation exists between g' and g": 

(14) 

g' + g" = 0. (15) 

We write the entropy equation of continuity in the 
form 

S + div (Svn +f)= 0 (16) 

with the unknown vector f in the energy flux. 
We represent the equations for superfluid motion 

in such a fashion that the conditions curl v '= 0 and 
v " = 0 are satisfied: s 

v: + V' ( cp1 - v~ + Vnv:) = 0, 

v: + V' ( <p 2 - v; + Vnv:) = 0. 

s 

(17) 

Here cp1 and cp2 are unknown functions at present. 
Our problem now is this: using the conservation 

laws, to find the form of the unknown functions. For 
this purpose, we compute the time derivative of E 
and, with the aid of the hydrodynamical equations 
03), ( 16) and (17), eliminate all terms that represent 
total divergences. In accord with Eq. (1), we have: 

E =~ 1/2p'v7z + PVnYn + (p' + p") Vn + (p' + p") Vn + !J.1P1 + !J.2P.2 

+ T S + (p', v~ - v nl + (p", v: - v n) = 

= - 1/2P v7z + jvn + p'v: + p"v: + 1-LIPl + !J.2P2 + TS. 

We further represent all the time derivatives here with the help of Eqs. (13)-(17): 

E =- (fL1 -v7z / 2) div (p' + p1 Vn + g')- (!.L2- v7zj2) div (p" + p2 Vn + g") 

- p'V' (c.pl- v7zj 2 + Vn v~)- p"V' (72- v~ I 2 + Vn v:)- Vni aii;h jOXR. 
- T div (Sv11 +f). 

Eliminating all total divergences, we ultimately get 

arrih , , , "l 
- Vni oxk -- p \7 (Vn vJ- p \7 (Vn Vsf + {p'\7 (fLl- Cfl) 

+ p" \7 (!~2- Cf2) + g'\7 fL1 -t- g"V'fL2 -t- fV'T}. 

(18) 

We now take up the transformation of the second 
brace in Eq. (18). In this case it is appropiate to 

represent the tensor "ik in the following fashion (Wtik 

is an unknown tensor): 
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'i'C;k = (- s + [J.I PI+ [1.2 P2 + TS) 0ik +:Jnik· (19) 

After substitution of ITik in the form (12) with this 
"ik the second brace reduces to 

- div {(j Vn) Vn + p' (vn v~) + p" (vn v:)} 

- Vn; a~ {:JR;k- p~ (v~i- Vn;)- p~ (v:i- ;n;)}. 
h 

Making use of this result, we get 

E =- div {(p' + p1 Vn + g') ([1.1- v;; 2) + (p" + p2Vn + g") ([1.2- v;; 2) 

+ Vn (jvn) + p' (vn v~) + p" (vn v:)} +{p' V ([1.1 - cp1) + p"V ([1.2- cp2) (20) 

+ g' V ([1.1 - [1.2) + fVT + Vn; -a:~ [p~ (v~;- vn) + p~ (v:;- vn) -:minl}. 

In the absence of dissipation, the quantities cpl' 
cp2, f, g' and !Dtik can depend only on the thermody­
namic variables and the velocities, and cannot de­
pend on their time and space derivatives. Examining 
isolated cases, such as: temperature equal to zero, 
small concentration of one of the components, etc., 
we can establish the form of the unknown functions 
uniquely. To simplify the problem, we draw upon 
some physical considerations. Thus, in a superfluid, 
all the entropy is contained in the thermal excita­
tions which partake only of the normal motion. 
Therefore, the entropy flow is equal to the product 
Svn, and the vector f (which we introduced into the 
entropy flow) must he set equal to zero. So far as 
the tensor !Dtik is concerned, we also know its form 
to a certain degree. Actually, if we introduce the 
liquid densities connected with the normal (p ) and 

n 
the two superfluid motions (p; and p;'), then we can 
write the tensor ITik in the form 

II in = Pn vni vnn + P~ v~i v~n + P: v;; v;h + p'Oik (21) 

(p =pressure). 
The sum Pn + p5~+ p;' is equal to the total density 

of the liquid. The momenta of the relative motion 
are then equal to 

p'=p~(v:-vn), p"=p:(v;-vn). (22) 

Taking (22) and (23) into account, we find that the 
tensor !Dtik is equal to* 

:mik = P~ (v:;- vn) + P~ (v;i- vni). (23) 

It now remains for us only to consider the combi­
nation of the remaining terms in (20), which do not 
have the form of a divergence: 

p' V' (cp1- [1.1) + p"\7 (<?2- [1.2) -1- g' V' ([1.1- [1.2). 

For th,is purpose, we make use of the limiting case 
in which the concentration of one of the components 
is close to zero. Then, as is well known (see Ref. 2) 

*It is easy to see that the tensor !lllik is symmetric, 
because of (22). 

this component will partake entirely of the normal 
motion, i.e., one of the momenta of the superfluid 
motion (p ') will he strictly equal to zero, except in 
the case in which and g '= - g 11 = 0 (see Ref. 2). 
Inasmuch as the vector g' is equal to zero in this 
case for all values of the densities of the compo­
nents, then, by means of simple calculations, we can 
conclude that this condition is always satisfied. In 
similar fashion, we find 

(24) 

Taking (21), (23) and (24) into account, we write 
down the final form of the hydrodynamical equations 
for the solution of two superfluid liquids. The equa­
tions of continuity: 

Pi+ div (p' + p1 V n) = 0, 

P2 + div (p" + p2 v n) = 0. 
(25) 

One of these can he substituted in the equation of 
continuity for the entire liquid: 

p-1-divj=O, j=pVn-1-P'-1-p". (26) 

The equation of continuity for the entropy: 

S + div Sv n = 0. 

The equations of superfluid motion: 

., ( v~ , 
Vs+V [1.1-z-1-Vnvs)=O, 

•• ( v~ ") Vs-1-Y' ,[J.z-2-I-VnVs, =0. 

Equation of motion of the liquid as a whole: 

ji + arrik;axk = o, 
where the momentum flux tensor is equal to 

(27) 

(28) 

(29) 

{30) 
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and the pressure is equal to 

p =- c + TS + IL1 P1 + IL2 P2· (31) 

Taking the thermodynamical identity (7) into consid­

eration, we then obtain 

(32) 
+ SdT- p'd (v~- vn)- p"d (v;- vn). 

Finally, the law of conservation of energy takes 

the form 

E+ divQ =0, 

Q = (p' + P1 Vn) (ILl-~-) 
+(p"+p2Vn)(tL~- ~}) +vn(jVn) 

+ p' (vn v~) + p" (vn v:). 

(33) 

For low velocities, we find the dependence of the 
chemical potentials on the relative velocities from 

Eq. (32): , 
Ps ( ' )2 

fL1 = fL1o + 2p Vs-Vn , 
(34) 

Ps , 
fL2 = [Lzo + 2p (vs- Vn)2· 

Here flto and 11 20 are the velocity-independent parts 
of the chemical potentials. 

The presence of three motions in solutions of 
superconducting liquids can lead to a series of sin­
gular phenomena. Thus, for example, in such solu­
tions propagation of sound vibrations of three types 
is possible, with different velocities. In addition to 
ordinary sound waves, propagation of two types of 

waves is possible, in which vibrations of tempera­
ture and solution concentration occur. 

In conclusion, we note that we know of only two 
superconducting liquids: liquid He 4 and liquid He 6• 

Unfortunately, the isotope of He 6 is short-lived (half 
life ,Q,8 sec), and this circumstance naturally makes 
difficult the possibility of experiments with solu­
tions of these liquids .. 

I consider it my duty to express my deep gratitude 
to Academician L. D. Landau for valuable discus­
sions. 
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