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The problem of inelastic proton-proton scattering at 690 Mev is considered. It is assumed 
that in the intermediate state an isobar is formed which decays into a nucleon and IT-mes
on. Limiting the consideration to isobars in S-states, using the laws of conservation of 
angular momentum and parity, and taking into account the Pauli principle, it was found pos
sible to obtain the angular distribution of scattered nucleons, with the introduction of only 
one arbitrary constant. 

INTRODUCTION 

WTE base our consideration of proton-proton scat
" tering on the experimental fact 1 of the exist

ence of an excited state of the nucleon (isobar) with 
ordinary and isotopic spins equal to 3/2. We consid
er further that in the collision process an isobar 
with a definite mass M = 1.31 * is formed in an 
S-state. Neglect of P- and D-state isobars is possi
ble for energies of the incident nucleon not greatly 
exceeding the 650 Mev threshold energy for formation 
on an isobar with mass M = 1.31. In connection with 
this, all calculations were carried out for an inc i
dent proton energy of 690 Mev, which is the energy 
obtained on the accelerator of the Institute for Nu-

*An absolute mass unit corresponding to 931 me is 
taken as mass and energy unit. 

clear Problems, Academy of Sciences. The assump
tions made proved to be sufficient to obtain an angu

lar distribution, containing one arbitrary constant, 
for the scattered protons. 

It must be noted, however, that because of the 
finite lifetime of the isobar ("' w- 23 sec) the energy 
spectrum and angular distribution of the scattered 
protons at 690 Mev should be rather strongly 
smeared out, and only upon increasing the energy of 
the incident protons to 800 Mev and above does the 
picture become more clear cut. 

I. KINEMATICAL CALCULATION 

We consider collisions of two particles of mass 
m 1 and m 2 such that two new particles of mass M 1 
and M 2 are formed in place of the initial ones. Let 
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one of the particles (say, m 2) be at rest, and the 
other in motion, having energy E. Then, making use 

of the laws of energy and momentum conservation, it 

is possible to show that the energy of the new par

ticle of mass M 1 emerging at angle cp 1 is equal to 

£2 -ml2 [ M~ (£ + m2l2- (Em2 + All2 ]''• 
Em2 + A1 + M 1 cos2rp1 1 - -----=-----

- E + m2 Mi (£2- mil cos2 cp1 
El= ---------------------~----~~----~~------~- (1.1) 

£ + m - cos2 91 (£2 -mil i (E + m2) 

A1 = (Mi- M~ + mi + m~) I 2. 

a) Formation of isobars. The production of an 
isobar in the collision of two nucleons takes place 
as a result of one of the six following processes 

J++ +n 
? 

P+P 
'>.J+ + p 

f++n 
? 

p+n , 
'>.. 

JO+ p 

All of these processes occur with different proba
bilities, but are kinematically equivalent, if the 
neutron-proton mass difference is neglected. It can 
be shown that in proton-proton scattering the ratio 
of probabilities of production of the isobars 1+ + and 
1+ is 3: l. In fact, we have 

(1.2) 

where 'I' 1 1 is the wave function of the system in the 
intermedi~te state, <1>3;.: I and X';.: I are the wave 

• • 2• z d 1 2. z • 1 functions of the Isobar an nuc eon, respective y, 
with isotopic spin projection I z. Using the expres
sions for the C lebsch-Gordan coefficients 2 we obtain 

from which 

cr (I+' p) = 1/s cr u++' n). (1.4) 

The expression for the energies of the nucleons 
scattered through angle 8 1 is obtained from the gen
eral formula (1.1) by substituting 

-----------------------------------
With the 60 Mev half-width 1 of the isobar level 

taken into account, the energy E 1 of the scattered 
nucleons depends on the incident energy E as shown 
on Fig. 1 for 8 1 "'15° and M = 1.26, 1.31, 1.37. From 

500 800 900 E (Mev) 

FIG. l. Dependence of the energies of the scattered 
nucleons on the energies of incident nucleons for M 
equal to: 1- 0; 2- 1.26; 3- 1.31; 4- 1.37. 

this figure it can be seen that the presence of the 
isobar changes the spectrum of the scattered nucle
ons substantially. Thus, in the case of elastic scat
tering, the energy of the nucleons scattered through 
8=15°will be simply 712 Mev for £=800 1\lev. If an 
isobar of mass M lying in the interval 1.26 <M < 1.37 
is produced in the collision of nucleons, then a max
imum, which splits into two with increasing incident 
energy, should appear in the energy spectrum of the 
scattered nucleons (see Fig. 2). 

b) Decay of isobars. The isobar decay into nu
cleon and 77-meson proceeds in the following way: 

r---+ n + \1-. 

If only proton-proton scattering is considered, 
then only the first three processes take place. 
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n a 

100 4' (Mev) 

FIG. 2. Setting in of the splitting of the maximum in 
the energy spectrum of the scattered nucleons for energies 
E of the incident nucleons equal to: a- 800 Mev and b-
900 Mev. 

Using, as in the case of formation of the isobar, the 
isotopic spin formalism, it is possible to show that 
the probabilities of the second and third processes 
are in the ratio 2: l, i.e., 

(1.5) 

Thus, if proton-proton scattering proceeds by way 
of isobar formation, then from (1.4) and (1.5) it fol
lows that the probabilities of the processes 

p + p-+ p + n + "+ and 
p + p ---';> p + p + ,..o 

are in the ratio of 5 : l. 
In order to obtain an expression for the energies of 

nucleons and mesons, coming from the decay of iso
bars, it is necessary to substitute in the formula 
(l.l): for nucleons 

'?1 = 6, m1 = M; m2 = 0, M1 = 1, 

M 2 = f.l. = 0,142, 

A= lfz(Mz + 1 _f.l.z); 

for mesons 

'?1=62, m1=M, m2 =0, M2 =1, 

M1 = f.l. = 0,142, 

A= 1Jz(./\!J2- 1 + f.l.2). 

2. FORMATION OF ISOBARS 

We determine the probability of formation of iso
bars with a given spin projection on the direction of 
motion taking into account only S-scattering in the 
final state. We designate the scatterin~ matrix which 
transforms the incident wave into the scattered one 
by 

(n, Sn, I R I no, s~.), 

were n0 and n are the unit vectors in the direction 
of motion of the particle before and after collision 
in the center of mass system; 5° and S are the 

no no 
projections of total spin of the system on direction 
n0 before and after collision. 

In order to characterize all possible spin states, 
we introduce the index r, denoting: r = 1- singlet 
(S = 0) state of the two nucleons, r = 2- triplet (S =l) 
state of the two nucleons, r=3-triplet (S=l) state 
of the isobar and nucleon, r=4-quintet (5,2) 
state of the isobar and nucleon. 

In order to use the conservation of total angular 
momentum j and its projection m, we expand the scat
tering matrix in terms of the orthonormal system of 
eigenfunctions ]~ (n, S ): 

Jm n 

+ 
X 1/m (n, Sn.) 1;,~n, (n0 , S~J (2.1) 

Using the fact that, because of the conservation 
of j and m and the lack of a preferred direction, 
(j, m, r IR jj0 , m 0 , r 0) has the form 

we obtain 

(n, Sn, I R I no, s~.) 

= .~ (r/Ri/ro) 1\'l'['r'(n, Sn,; n0 , S~.), 
J, r. r 0 

(2.3) 

Wj· r, (n, Sn,; n0 , S~.) 

j + 
~ Jjm (n, Sn.) J~?m, (n0 , S~.). 

m--1 

For j "'0 a single state with l =5 corresponds to 
each r. For j"' l the state r = l(S"' 0) can he obtained 
in only one way (lo=l). The states r"'2,3(S=l) are 
possible for the three values l =0, l, 2. The values 
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l=l, 2, 3 correspond to the state r=4(S=2). For 
j = 2, one value l = 2 corresponds to the state r = l 
r=l(S=O). The states r=2,3(S=l) are possible for 
three values l=l, 2, 3 and, finally, the state r=4 is 
possible for five values l =0, l, 2, 3, 4*. 

Together with the authors of Refs. 3 and 4 we will 
consider that a pseudoscalar isobar is formed in the 
nucleon collision process. Then, because of con
servation of parity, all matrix elements correspond
ing to transitions with changes of l of ± l, ± 3 ... 
should be zero. 

Thus, 4 complex or 8 real constants enter into the 
description of the transition: nucleon + nucleon --> 

isobar+ nucleon (inS-states). However, the situa
tion alters materially if one considers the collision 
of two identical nucleons. In this case it is neces
sary to take into account the Pauli principle, accOJ:d
ing to which all matrix elements corresponding to in
itial states with even S and odd l and with odd S and 
even l are zero. 

Considering that the contribution of terms with 
l >0 is small in the final states, we find that one** 
real parameter C is sufficient to describe the colli
sion of two identical nucleons. 

Thus, in the collision of two identical nucleons, 
the scattering matrix has the form 

(n, Sn, I R I n0 , s~.) = CW~' 1 (n, Sn,; n0 , s~.).(2.4) 

Using the well known expression for spherical 
vectors5 , we obtain 

Jim (n, Sn,) = Yo;o (n) <I>~) (Sn,), 

J~m (n, Sn.) = Y 2m (n), (2.5) 

where <t>< 2 ) (S ) are spin functions corresponding to 
m n 0 

total spin 5=2 and projectionS =m. 
no 

Thus, the operator W24 • 1(n, S ; n0 , S0 ) can be 
no no 

written as 

w4.1 ( s . so ) (4-)-'/, ~ rh(2) • 
2 n, "•' no, n, = " ..::::.J 'Vm (Sn.) Y2m (n0). 

m 
(2.6) 

If the Z-axis is directed along n 0 , then 

\li~' 1 (n, Sn,; n0 , S~.) = (VS / 4o:) <1>&2> (S~.). (2.7) 

*The coefficients (r jRj jr0 ) for j ~ 3 are not considered 
because after collision the state with l = 0 (S-scattering) 
is not possible for j ). 3. 

** In general, C is a complex number, but in so far as 
the absolute value of the phase is not important, only the 
modulus of C need be considered, 

But since we are interested in states with spin pro
jections on the direction n, because different angular 
distributions correspond to states with different spin 
projections, it is necessary to transform <t>~2 l(Sn ) to 
the new system of coordinates with the Z-axis aYong 
the direction n. The matrix corresponding to the 
irreducible representation of order l of the rotation 
through Euler angles cp 1, e. cp2, has the following 
form 6 

T l = e-im'P,pl ( ,. u) ---inC/), mn co., v e ' 
d l-n 

P~n(x) ==A(!- x)-(n-m)/2(1 +x)-(n+m);2 dxl-n 

X[(l-x)1-m(l +x)!+mJ. (2.8) 

In our special case l=2 and cp1 = cp2 =0. Therefore, 
we have 

<l>' (S ) ==T2<1>(2l (S ) =- _!__ 1/ 3 sin2 0 (<1>(2> (S ) n 0 n, 2 r 2 -2 n 

+ <1>~2 ) (Sn)) + i -v 1 sin 6 cos 6 (<D~i (Sn) + <Di2) 

X(Sn)) + ~ (3 cos2 0- 1) <I>&2 >~(Sn)· 
Now (see Ref. 2) 

Thus, the probabilities of different states corre
sponding to different projections of the spin of the 
isobar 2. and spin of the nucleon a on the direc-n n 
tion n are equal to 

and, summing over the two possible projections of 
the nucleon spin, we obtain 

s; · 2 a 
s Sln v for 1:n = + 3/2, 

3/s cos2 0 + lj2 for l:n = + 1/2· (2.10) 

Integrating the expression obtained over all solid 
angle, we find that the total probabilities of states 
with spin projections of the isobar ± 3~ and ± ~ 
are the same. 
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3. DECAY OF THE ISOBAR is most simple in the center-of-mass system of the 
isobar. According to Ref. 7, the components of the 

The determination of the differenti~l cross section wave function of the isobar in the center of mass 
for decay of an isobar into a nucleon and 11-meson system are 

' 1 ) 
I i \ 

3 1 ' 0 
Bz = :z \ ~ r B3 = B4 = 0; Sz= 2: B1 = V2 \ o ; 

\ 0 (3.1) 
I 0 \ ;0) -2) 

Sz=-{-: B,~ v'. U} 1 I i 
B, ~ v'o ( ~ ; B4 = 0; B2 = V61 o ; 

\o; 

(' B, '~ v\ C ~} 0) 1 -_'I_ 0 \. 1 2 Sz=-z-: B1- V6 ~ )' B,~ ¥6 (g ; B4 = 0; 

\ 0 
(3.1') 

I 0 \ 
( 1 Sz =- ~ : 1 ( 1 

1 - i \ 
81 =¥2 o I; 82 = V2 ~ r B3 = B4 = 0. 

o I 

If the 4-momentum of the 11-meson in the center of 
mass system of the isobar is designated by q , then 
the matrix element of the transition can be written 

Using the above expressions for B , we have 
JJ. 

(3.2) 

where q"" I q I and (), <pare the angles defining the 
direction of motion of the nucleon in the center of 
mass system of the isobar. 

Substituting in (3.2) definite values of lji and q 
B , corresponding to particular orientations of the 
s0ns of nucleon and isobar, we obtain the matrix 
elements and, consequently, the probabilities of 
various transitions. Thus, we have 

1\l's~z, '1. = 1/z sin2 e, 
W.:,. •r, = 2/3 cosz 0, 

W -'!,.'i, = 1/s sin2 0, 
w -",·,, •:, = 0, 

Ws~z, _11 2 = 0, 
W",, ~•., = 1/s sin2 B (3 4) 

W -•:,. _,1, = 2/3 cos2 0, · 
W -':,. -'b = 1/2 sin2 0, 

where W5 is the probability of decay of an iso
bar with ~pf~ projection Sz into a 11-meson and nu
cleon with spin projection u z. 

Summing over different orientations of nucleon 
spins, we obtain 

W,/, = sin2 B, W. 1, = 4/3 cos2 6 + 1j3 sin2 6, (3.5) 

where W3;,, W11 are the probabilities of decay of an 
2 12 

isobar with lsz/= 3~, ~. 

4. TRANSITION TO THE LABORATORY SYSTEM 

The probability wJ ( lji) of formation of an isobar 
in the laboratory coorzdinate system is connected 
with the probability of formation Wl ( lji ') in the sys
tem of the center of mass of the cofliding nucleons 
by the following relation 

W} (•1')sin·1'd·l/ = w~ (·~)sin•"d1 (4.1) 
Z I • I Uz • f \' 

whereas there is the following relation between the 
angles of emergence of the isobars lji1 and lji in the 
different systems: 
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cos ·v = (P (·~)cos·¥- p;2); (P 2 0)- pP (·f) cos 'f 

+ p2/4yr,, (4.2) 

where P (ljl) is the momentum of the isobar, p the mo
mentum of the incident nucleon. But in the labora
tory system, to each lji correspond two values of 

P (ljl) (P+ and p-) and consequently, also two values 

of lji 1 • In this connection, we definite wi , A to be 

the probability, in the laboratory system, tf forma
tion of an isobar with spin projection S z and momen
tum p+, if A=1, and r, if A=2. 

If the total probability of formation of an isobar 
is normalized to unity, then 

I\). ( ' 1 dPi. . I\ 1-,-- cosy+--,- sm y) 
::; • o , 2 P1, dy 

wf. 1. = 10-. sm- '1 (1- K 1_ cos tiJ + K~. ;4)'12 

(. 1 + :J ~os 2 Y -- K. cos <jJ _j... Kf) (1 - -~ 1' \(cos <jJ + _ _1_ dPi. sin t!J)\1 
I. ' 4 2 ' P,_ dy / 

(4.3) 

h (i- K,, cosy+ K~. /4)'1, 

The transition from the center-of-mass system of 
the isobar to the system where the Z-axis coincides 
with the direction of flight of the isobar in the lab
oratory system is accomplished in an analogous 
fashion. 

z 

!J 

FIG. 3. Angular distribution of the scattered protons in 
the laboratory system. 

Thus, we let w~ • A(ljl) be the probability of for
mation of an isoba: with momentum P A in the lab
oratory system, and wff A (8) he the probability of 
formation of a nucleon z~itlt momentum p (e) (f.L= 1 

11-
for p +and 11=2 for p_) as a result of decay of an 
isobar of type S z, A in the system of coordinates 
connected with the direction of motion of the isobar. 
Then the probability of emergence of the nucleon at 
angle n in the laboratory system relative to the 
direction of the incident nucleon is equal to 

UJ(n)= ~ ~ '"-'}z·f'-('f) w}:. 1.,1J.(fJ)d·~dr;, 
Sz,i .. :'- (4.4) 

cos 0 =cos ncos •!: +sin n sin 'f sin'+· 

In order to simplify the calculation of the double 
integral Eq. (4.4) we replace the probabilities 
wf , A ( ljl) by 8-functions, corresponding to the most 
pr~bahle angles, taking the exact expressions for 
w§ A (8). The results of such calculations are 

• Z• '11- F' I d 1 h giVen on 1g. 3. n or er to eva uate sue an approx-
imation, a numerical integration of the expression 
Eq. (4.4) was carried out for a single value f! = 18°. 
It turned out that the error coming from the replace
ment mentioned above was 16%. 

In conclusion, I should like to use this opportu
nity to express my deep gratitude to lu. A. Gol'fand 
and Acad. I. E. Tamm for valuable advice and crit
ical remarks and constant interest in this work. 
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