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Equations are obtained for the skin effect in thin films and wires by using kinetic theory. 
A method is developed for the approximate solution of these equations which gives expres­
sions for the impedance of thin films and wires. 

1 A KINETIC theory of skin effect for bulk conduc­
e tors was developed by Reuter and Sondheimer 1. 

If l «o0 , where lis the electron free path in a metal 
and 80 is the classic skin layer depth, then the 
usual or normal skin effect occurs. If l >v 80 or 

l » o0 , the skin effect is anomalous. In the case of 
samples of small size (wires of radius R~ l or films 

of thickness h ,:(,.!), just as in the 80 ~ l case, it is 
impossible to the use the normal skin effect theory. 
Hence, the kinetic approach for thin films and wires 
is necessary for direct current 2 - 6 . Also the question 

arises of the behavior of small-size samples in an al­
ternating field. Dingle 7 considered the question for 
the optical frequency case, taking only diffusion re­
flection of the electrons from the metal surface into 
account. The work of Azbel' and Kaganov 8 is also 
devoted to this question, where, as in Ref. 7, the 
passage of a plane electromagnetic wave through a 
film is analyzed. Hence, the impedance for this 
plane wave passage is calculated in these works. It 
is also interesting to determine the impedance of 
thin films and wires with respect to the high-frequen­
cy current flowing therein. 

l3elow, we consider the conclusions to which ki­

netic theory leads for the case of skin-effect in thin 
conductors, i.e., in such conductors as are much 
less thick than the free path length of the electrons 

in an unlimited metal. To be specific, let us visu­
alize cylindrical wires of radius R and plane films 
of thickness h. 

2. Let us direct the z axis parallel to the wire 
axis (or parallel to the film surface). Let us impose 
an electric field E = E z ei wt, directed along the z 
axis, on the sample. The quantity E z is a function 
of the points in the wire cross section. If this func­
tion is known, then the energy losses in the conduc­
tor are characterized by the impedance* 

*We use the impedance definition Z =E (P) I I, which 
leads to (I) and (2) under the assumption of field sym­
metry over the wire cross-section. Consequently, we 
will always select the solutions corresponding to field 
symmetry subsequently. 

Z = R + iX = (4dw I coc) E (P) IE' (P), (l) 

where P is a point on the conductor surface, E' (P) 
is the normal derivative relative to the conductor 

surface, and 

1 
1 

IX= 2 
for a conducting half-space 

for films (2) 

2rcR for wires. 

The real part of the impedance R gives the ohmic 
resistance of the conductor and the imaginary part 

X gives the inductance. 
The classical skin effect theory, valid for l «h, 

l«o0 , leads to the following expression for films of 

thickness h: (3) 

z = - 2rriw ctg k !!__ = - 4rrioo [1 - _!_ (koh)2 __ ... ] ' 
c2ko o 2 c2k2h 12 

0 

k~ =- 2i I o~ = - 47:iwa0 / c2 , (4) 

where a is the conductivity of the unlimited sample. 
3. As 0shown in Refs. 2-6, if the lateral dimensions 

of the conductor become comparable to the free path 

length l, the direct current sample conductivity 
(w=O) starts to depend on the lateral dimensions. 

For thin films with h «l, we have 2 : 

(if s:(;1); (5) 

(if s = 1)' 

where 8 is the portion of the electrons reflected 
specularly from the sample surface. For thin wires 
with R <<l, we have 4 : 

1 + e:2R 
cr = cro 1- e: T (if s :(; 1); a = O'o (if s = 1 ). 

(6) 

4. In deriving the skin effect equations, we used 
the Chambers method 5 which, being equivalent to 
the kinetic equations method, permits a whole set of 
intermediate calculations to be avoided. The gen-
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eralization of the Chambers method to the case of a 
field- dependent on the coordinates is made without 
difficulty. This method yields for the average ve­
locity increment (in the z direction) taken by elec­
trons arriving at a point M from P in the volume of 
the conductor (Fig. l): 

LlVz = ,:v n E (s) e-s/l ds+ 

+ 11:e-~l ~ E (s) e-s/l ds], 
1-&e bfl b 

(7) 

where a=PM and the same notation is used as in 
Ref. 5. If E is independent of s, the result of Ref. 5 
is obtained from (7). 

The expression (7) permits the current at the point 
M to be expressed through E z: 

(8) 

M 

FIG. l 

where {0 is the equilibrium distribution of the elec­
trons in the metal. Substituting (8) in the equation 
for Ez 

we obtain an integra-differential equation for E z. 

Let us give the final form of the equation. For films 
of thickness h: 

0> 

(x) ~ e-ht/l xt ( 1 1 ) 
•.p2 =, 2 ht/l ch - 1- -1 =- Ta dt. 

1-&e 
(IO) 

1 

For wires of radius R 
2" R 

~ d:p ~ E (r') 
0 0 

x [ :p1 (I r- r' [) + s~2 (I r- r' i)] r' dr', 
(ll) 

:p (! r I) = ~ \ e-rtfl V f2- 1 t!!__ = 2 S ( !__). 
1 ' , r J ta r 3 \ l ' 

1 
0> 

I . , -- _2 ~ e-a!fl + e-bt/l dt 
( r ) e-rt/lVf2- 1 ~~-'?2 ! I - bt/l t3 • r 1- ee 

1 
(12) 

In the expressions (12), S 3 is a function introduced 
in Ref. 4, r and r' are points in the wire cross sec­
tion, b is the length of the chord drawn through r and 
r', b-a and a are segments into which the point r 

FIG. 2 

divides the chord (Fig. 2). We neglected the relaxation 
time in deriving these equations. The relaxation time 
can be taken into account if l/0- icv 'C) is written 
instead of l in (10) and (12) for cp1 and cp2• We will 
neglect the quantity cv'L" in comparison with unity 
below. 

5. Let us turn to the solution of the equations ob­
tained. Let us first analyze Eq. (9) for the thin 
films. This equation is easily reduced to the inte­
gral equation 

h 

(9) E (x) =cos c:!. (\x- ~ \) + ~ \ K (x,x') E (x') dx'; 
c ~ 2 82[ ~ 

0 0 

+ s:p2 (x- x')] dx', 

0> 

where !fll (x) = ~ e-t/xl/1 ( +- -j3 ) dt, 
1 

(13) 

X 

K (x, x') = -~ ~ sin; (x- t) f:p1 (t- x') 
h/2 

+ s~2 (t- x')l dt. (14) 
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It is easy to be convinced of the equivalence of (9) 
and (13) by calculating the quantity E" +(w/c) 2 E 
using {13). This quantity gives the right side of {9). 

While the kernel of the original equation (9) would 
have a logarithmic singularity at x =X1 , the kernel 
of Eq. (13) is bounded. If 

I 3i~ max K (x, x') j < 1, 
I £./)0[ 

(15) 

Eq. (13) can be solved by an iteration method. Put­
ting cos 7'(x- .!p=1 in the h«c/w case, and tak­
ing E 0 = 1 for the zero approximation, we obtain 

h 

E(x) =I+ 2 :~: ~ K (x,x')dx' 
0 

{16) 

h h 

+ (_ 23~21 y \ \ K (x,x') K (x',x") dx' dx" + ... 
0 0 0 

Substituting (16) in (1) for the impedance, we find 
the latter as the ratio of two power series in the 
parameter (15). In its turn, this ratio can be expand­
ed in a power series in the same parameter. The 
first term of the expansion is independent of the 
field frequency w and gives the ohmic resistance of 
the film to direct current: 

(17) 

:~ co~ (-~-- L) i- e-htil dt]-1 --- _1_ - -;; (1- s) 
"- \13 t 5 -I-c:e·-hf/1 - crh · 

1 

This expression is equivalent to that obtained ear­
lier by Sondheimer6 • It can be used as a definition 
of the film conductivity a in a direct current. The ex­
pression (5) for a is obtained from (17) for h «l. 

The evaluation of the next terms of the expansion 
of Z in powers of the parameter {15) appears to be 
somewhat complex. Let us give the results for the 
case of purely diffuse (8=0) and purely specular 

_ (8=1) reflection for h «l. In both cases, 

Z=Z0 [1--(kh) 2 j12+···], (18) 

where Z is defined by {17) and k by (4) if a 0 is re­
placed by a ( 8) according to (5). It is easy to see 
that the parameter (15) is the square of the ratio of 
the film thickness to the depth of field penetration 
into an unlimited sample with conductivity equal to 
the film conductivity. 

As is seen from (3) and (18), the first terms of the 

impedance expansion in the normal skin effect case 
(h, a 0 » l) agree with the terms of the impedance ex­
pansion for thin films (h « l, a» l) with k replaced 
by k 0 • The region of such "quasi-normal" skin effect 
in thin films appears to be broader than the region 
of normal skin effect in bulk conductors. Higher 
terms of the impedance expansion in powers of kh 
were not calculated. It should not be expected that 
the coefficients of the expansions (3) and {18) 
will agree exactly. As will be clear from the sequel, 
it can be imagined that they will be close in order 
of magnitude. 

6. In order to determine the impedance at higher 
frequencies, it is convenient to use a less exact 
approximate method of solution which we will illus­
trate first by an example of a metallic half-space 
(a problem analyzed in Ref. 1). In this case, the 
skin effect equation is (for simplicity, we consider 
the reflection to be diffuse): 

00 

E" + :: E = 2 ~~~ } 91 (x- y) E (y) dy. (l9) 

As is seen from (19), the current intensity at the 
given point x is determined by the whole region near 
this point. The effective distance characterizing 
the size of this region equals (in order of magnitude): 

co co 

I, = ~ ~1 (x) xdx / ~ cp1 (x) dx = ~ l (20) 

0 0 

[see Eq. (10)]. In order to determine the impedance, 
we must know how the field itself behaves in the 
depth of the metal, even if values of the field and 
its derivative on the metal sudace are essential. 
In the region close to the metal surface (x =0), E 
satisfies the equation 

00 

E" + ~= E = 2
3: 21 ~ 91 (y) E (y) dy. (21) 

0 0 

Let us replace the kernel cp1 (y) by a function 
which equals a certain constant f3 in the limits from 
0 to .\[ Eq. (20)] and which becomes zero outside 
this range. Then (21) becomes: 

A 

E"+~:E=~\E(y)dy. (22) 
c" 2 321 J 

0 0 

This equation admits of a solution E(x)=e·kx. Sub­
stitution in (22) gives an equation for k 

k 2 + w2jc2 = (3 i~;2 o~lk) (1 - e-3 kl/8). (23) 
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If lktl «1, i.e., if the field attenuates at distances 
much larger than the free path length l, then (23) he­
comes 

(24) 

Inasmuch as the classical skin-effect theory is valid 
in this case 1, the right side must he equal to 2i/o 5. 
Hence, we find: 

~ = 32j9. (25) 

In the other extreme case, we obtain for lktl» 1, 
neglecting displacement currents: 

~c = (16if30~l)' 1 • == cV3 + i) (2/30~1)' 1 ', (26) 

from which the impedance is 

According to exact theory 1, 

These values are very close. If both ,\ and {3 are 
considered as adjustable parameters, then exact a­
greement is obtained with the Renter-Sondheimer 
theory for 

It is understood that the agreement with exact theo­
ry can hold in the two extreme cases: lktl » 1 and 
I kll « 1 since the exact solution is slightly differ­
ent from the exponential e·kx only in these cases 
(see Ref. 1, Appendix III). 

7. Let us use this rough theory in the thin film 
case (h « l). In this case, we can again write (22), 
where the film thickness h should be substituted as 
the upper limit of integration instead of ,\ [ Eq. (20)]: 

h 

E" (h) + (~~ E (h) ~~ 3i;1 \ E (y) dy. (28) 
c- 21;21 j 

0 0 

Let us look for the solution as E =cos k(x- h/2). 
Substituting this function into (28), again neglecting 
the term w2/c 2 ·in comparison with k 2 , we obtain 

As in Sec. 6, the constant {3 can he determined by 
requiring that the impedance agree with (17), obtain­
ed in Sec. 5 by the iteration method, w-+ 0. This 
yields 

B _ 4/cr __ 4 I 
1 - 3hcr0 --371 (31) 

00 

I" ~ ( 1 1 \ 1- e-htll 
-2-,-~-~(1-c:) -,3--fs,J htlldt. 

'1- <:e-
1 

In the lkh I» 1 case, we find 

In this case, we find for the impedance 

where a is the static conductivity of the film of 
thickness h. 

(32) 

(33) 

An approximate expression can he obtained from 
(27a) by replacing l by hand a 0 by a therein. 

8. Simplifying (11) for thin wires (R <<l) by the 
same method, we obtain: 

R 

d2 E +_!:_dE+-~~ E = 3i~ \ E (r') dr'. (34) 
dr 2 r dr C2 27t321 J 

0 0 

We look for the solution of this equation as E(r) = 
J 0 (kr). Substituting J 0 (kr) in (34), we find: 

Hence, again neglecting the quantity w 2jc 2, we ob­
tain for lkR I« 1: 

(36) 

Just as in the thin film case, we determine the con­
stant {3 from the condition that the impedance at 
zero frequency should give the known expression 4 

for the resistance of a thin wire. This yields 

0 - i,-;-:!5!__ = ~ 1 + < ( :;;:::: I) (37) 
11 - 3 Rcr0 3 1 - 'o: E "" • 

k 1 cos (kh/2) =~ (3i~;0~/) sin (kh/2). (29) Hence, we obtain for lkR I» 1 

Hence, for lkh I « 1, we find z = 1 + i V3 (21t2wzR )'1, 
21tR c4cr · (38) 

(30) 9. Let us discuss the results obtained. The pararn-
eter characterizing the skin effect in the condl!cting 
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half-space case is the ratio l/ o , where o0 is the 
classical skin layer depth. As follows from our com­
putations, the critical parameter in the thin conduc­
tors case is the ratio of the size of the conductor 
cross-section (film thickness h or wire radius R) to 
the depth of field penetration in a bulk conductor 
with the same static conductivity as in the thin con­
ductor. Namely, if the depth of field penetration is 
large in comparison with the film thickness or with 
the wire radius [see inequality (15)], the analog of 
the classic skin effect holds with the difference, 
however, that the conductivity is determined by (5) 
and (6) in the thin conductor case. In this case, the 
field and the impedance can be found by a power 
series expansion in the parameter (15). As is easy 
to see, the real part of the impedance (the ohmic re­
sistance) is expanded in even powers of the fre­
quency w in this case, just as in the classic skin 
effect case, and the imaginary part of the impedance, 
in odd powers of w. The expansions for thick and 
thin films agree to the accuracy of terms of order 
(kh) 2 (with the difference that k0 replaces k in the 
thick films case). The order of magnitude of the 
next terms of the expansion can be determined by 
using an approximate method explained in Sees. 6, 
7 and 8. According to this method, the impedance of 
a thin sample can be obtained from the expansion 
(3) if we speak of a thin film and from a similar ex­
pansion for a wire, by replacing the conductivity of 
the unlimited sample a0 by the conductivity of a 
thin conductor a. Hence, the normal skin effect 
theory can actually be used to estimate the imped­
ance of thin samples in the frequency band under 
consideration. Let us note that the frequency band 
where such a quasi-classical skin effect occurs 
appears to be much broader than the region of clas­
sical skin effect in bulk conductors. Actually, con­
dition (15) for a thin conductor or the corresponding 
condition lkh I «1 ( lkR I «1) in the approximate 
method, is satisfied, as is easy to see, for a much 
larger frequency band than in the bulk conductor. A 
case is even possible when anamalous skin effect 
conditions are not generally realized in thin conduc­
tors. This occurs when condition (15) is violated at 
such high frequencies for which it is impossible to 
neglect the relaxation time and to take the relaxa­
tion time 1: into account yields a condition analogous 
to the inequality (9) of Ref. 1, i.e., again the clas­
sical skin effect condition. 

When there is an anomalous skin effect region {as 
always occurs if the conductor is not too thin), the 
impedance of the thin conductors is expressed by 
the approximate formulas (33) and (38). In this case, 
the impedance depends on the thickness of the film 
wire. The impedances of thin wires and thin films 
are, respectively, proportional to 

The impedance of a thin film depends on h as h ';. and 
the impedance of a thin wire is proportional to R- 20, 
for w=1, a=a0 • The skin effect in a thin film was 
analyzed earlier by Ginzburg 9 , where ae££=a0 yh/l 
with y= 1 was assumed for the thin film. As is clear 
from the above, y=ln (ljh). 

It is impossible to compare the conclusions ob­
tained with the results of Dingle 7 and Azbel' and 
Kaganov 8 since they determined the impedance for 
the passage of a plane wave and not for a current 
as in the present work. 

The author thanks V. L. Ginzburg for formulating 
the problem and for many discussions, V. P. Silin 
for discussions and also M. I. Kaganov for a number 
of interesting remarks. 
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