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It is shown that in the case of a scalar field the Klein paradox does not arise for spin-Y. par
ticles tunneling through a potential barrier. The particle does not fall toward the center of a 
centrally symmetric field even when a high-order pole exists in the center. This result also 
holds in classical relativistic theory. 

I FOR a scalar interaction, the interaction poten
• tial between a particle and the field is an invar

iant. This is not the case for an electrostatic 
(vector) interaction, when the potential is the fourth 
component of a four-vector. Therefore, the Dirac 
equation for a spin-~ particle in a scalar field can 
be written 

{£ - i (IX1 _i_ + IX2 _!!_ + IX _!!_) 
ax iJy 3 i}z 

(l) 

Here E is the total energy of the particle, E0 is its 
rest energy U is the potential energy of the particles 
in the scalar field, and al' a 2 , a 3, and p 3 are the 
Dirac matrices; Planck's constant and the velocity 
of light are set equal to unity. 

We shall consider one-dimensional motion of a par
ticle along the x axis in a field which can he re
presented by a square potential barrier of the form 

V=O(x<O), V=U 0 (x>O). (2) 

In this case, as usual, we look for a solution of (l) 
in the form of plane waves: 

~i = aieip,x+ bie-ip,.~ (x<O), 

~~=cieipzx (x>O). 
(3) 

Inserting these solutions into the equation gives the 
dependence of the particle momentum on its energy, 
namely, 

It is clear that the reflection coefficient is equal 

to unity when p 2 is pure imaginary, or when E <E0 + 
U0 • In the case of a vector (electrostatic) interac
tion, p 2 is of the form 

(vect) v 2 2 
P2 = (E- U o) -Eo (5) 

and is imaginary when E -E0 <U0 <E +E0 • It is seen 
from this that for a scalar interaction, the particles 
will not tunnel through a sufficiently high harrier 
(the Klein paradox will not occur). 

A no less "paradoxical" phenomenon, however, 
does take place for the scalar interaction. In this 
case p 2 becomes imaginary and the reflection coef
ficient becomes unity for a sufficiently high nega
tive value of U0 , when I U0 I<E +E0 • In other words, 
not only is it impossible for the particle to pass 
through a sufficiently high barrier, but it is also im
possible for it to penetrate into a sufficiently deep 
well. 

These results remain.valid not only in the case of 
a square harrier, but also for a "smoothed out" bar
rier. Let us consider, for instance, the behavior of a 
particle in a field whose potential for instance, the 
behavior of a particle in a field whose potential is 
of the form 

U (x) = V / (1 + e-ax), V = const. (6) 

In this case it is possible to find an exact solution 
for t;he Dirac equation (l) in terms of hypergeometric 
functions. This solution is of the form 
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where F( a, (3, y; y) are hypergeometric functions, c 
is a constant, 

A= -~fa; 

(7) 

(lO) 

lnser ting (10) into the Dirac equation (1) and sepa
rating the radius and angle variables, we obtain the 
following radial equations: 

(8) (E + Eo- U) f + (dg I dr) -lg I r = 0, 

~1 =fl.- v + t.; 
~z == 1-L - 'Y - I·~; 11 === 1'2 === 2(1. + 1 . 

Making use of the asymptotic expressions for the 
the hypergeometric functions, as well as several of 
their properties, we can calculate the reflection 
coefficient, which is found to be 

R = I r (2v) r (!L- v +:A) r (!L- v --:A) /2 (9) 
r (- ~v) r (!L + v +:A) r (!L + v- :A) 

X 
1 (!L -v)2- ).2[2 
i (tJ.+v)2-J..2[2 

Since ,\ is real and v is pure imaginary, it follows 
from (9) that the reflection coefficient R = 1 when p. 
is real. It follows from Eq. (8) that, independent of 
the magnitude of a, which determines the "steep
ness" of the potential energy curve, the particle can 
neither tunnel through a barrier of height V <E-Eo 
nor penetrate into a well of depth IV I< E + E 0· 

For comparison, we remark that in the case of a 
vector field, the Klein paradox arises for a "smooth
ed-out" barrier only if the potential energy increases 
to 2E0 in a distance which is smaller than the Camp
wavelength of the particle. 

2. It is known that in the nonrelativistic quantum 
mechanical treatment of a spin-~ particle in a cen
trally symmetric field, no stable states can take 
place if the potential in the neighborhood of the at
tracting center increases as r-n, where n <2 (here r 
is the distance from the center). This result remains 
valid also in the relativistic treatment if the inter
action is electromagnetic (of the vetor type). A dif
ferent result is obtained for a scalar interaction. 

Consider a particle in a scalar centrally sym
metric field whose potential energy is given by 

- (E- Eo + U) g + (df I dr) + (l + 2) fIr = 0, 
(11) 

where f and g are functions which depend only on r, 
and l is the azimuth quantum number. The double de
generacy of the Dirac equation lies in the fact that 
there exists another pair of radial equations which 
can be obtained from the first by replacing l by 
-U + 1). The investigation of this second set of 
equations is unnecessary, since it is exactly anal
ogous to the treatment presented below. 

l3y eliminating one of the functions from (ll), we 
obtain the second order equation 

d"f ( 2 dU i dr \ df 
dr~ + --,- E-E0 +U)ITr 

+ [£2 _ (E _ U)~ _ l + 2 , dU I dr 
0 r 1:.. -E0 + U 

(12) 

The asymptotic behavior of the solutions of this 
equation for small r is given by the equation 

!E1_ + n + 2 !!1_-~ f - 0 (13) 
dr2 r dr r2n - ' 

The solution of Eq. (13) can be written in terms of 
Dessel functions 

f = r-(11+1)/2 /(11+l)/2(n-l) ( + 1 ian rl-n) '(14) 

and by making use of the asymptotic behavior of the 
Bessel functions for small r, we obtain 

f ~ exp { ± 1 a n rLl }· (15) 
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which is accurate up to a factor multiplying the ex
ponential. 

Thus when r= 0, one of the solutions becomes in
finite and the other vanishes. The same result is 
easily obtained in solving the Dirac equation (in 
spherical coordinates) in the absence of a field. 
The fact that the number of finite solutions for r=O 
does not change when a field is introduced indicates 
that in this field the particle does not fall into the 
attractive center. 

3. It can he shown that the result of the previous 
section is not a quantum effect, hut holds also in the 
classical (relativistic) theory. 

In the quantum mechanical treatment, the energy of 
the scalar interaction between the particle and the 
field is given by a term of the form p3 U(r), where p3 
is a Dirac matrix. It is known that in the classical treat
ment this matrix corresponds to the factor YI-{3 2, 
where {3 is the velocity of the particle (in the units 
being used}. 

Choosing the interaction energy between the par
ticle and the field in the form 

U = - ar-n V 1 - ~2 , (16} 

when n is arbitrary, we obtain the following expres
sion for the classical {relativist.ic) Lagrangian: 

Here E0 is the rest energy of the particle, and a is 
the coupling constant between the field and the par
ticle. Since this is a spherically symmetrical prob
lem, it is clear that the total angular momentum is 
conserved. If the z axis is directed along the total 
angular momentum, the trajectory of the particle is 
in the xy plane. In cylindrical coordinates with the 
origin at the force center of the field, f3 2 = ~ 2 + r 2 ~~ 
and since cp is a cyclic coordinate, the generalized 

momentum p'fconjugate to it is conserved: 

- aL - (E - _!!____) r2~ = con st. Pep-- a~- o ,n y- 1 _~2 (18) 

Using the expression for p and 
'f 

P = ~ = (E - .!L) r I V 1 -- 82 ( a • Q n I ' r \ r 

we find lthe second integral of the motion, namely the 
total energy of the particle in the field: 

{19) 

=(Eo- ar-n) I Vl- ~2 = const. 

Further, eliminating ~ from Eqs. (18) and 19 and 
making use of the expression for f3 2, it is easy to 
obtain 

.. , -2 -n)2+ 2/ 2) r" == 1 -- H [ ( E 0 - ar p cp r . (20) 

It is immediatedly seen from this equation that the 
particle ean not approach very close to the attactive 
center, since for sufficiently small r the right side 
of expression (20) becomes negative, whereas the 
left side is an essentially positive quantity. This 
result remains true for any sign of a, so that the par
ticle can not fall into the center whether it he re
pulsive or attactive. From expression (20) it is also 
seen that in the attractive case the particle in the 
scalar field will move in closed trajectories when 
H =E0 • It is thus possible, in spite of a high order 
pole at the center, for the particle to have a stable 
state in the field. 

Translated by E. ]. Saletan 
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